【題目】已知函數(shù)f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,則a的取值范圍為( )
A.( , ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]
【答案】A
【解析】解:f′(x)=3x2﹣6ax﹣9a2的圖象是一條開(kāi)口向上的拋物線,關(guān)于x=a對(duì)稱. 若 <a≤1,則f′(x)在[1,4a]上是增函數(shù),
從而(x)在[1,4a]上的最小值是f′(1)=3﹣6a﹣9a2 , 最大值是f′(4a)=15a2 .
由|f′(x)|≤12a,得﹣12a≤3x2﹣6ax﹣9a2≤12a,于是有3﹣6a﹣9a2≥﹣12a,且f′(4a)=15a2≤12a.
由f′(1)≥﹣12a得﹣ ≤a≤1,由f′(4a)≤12a得0≤a≤ .
所以a∈( ,1]∩[﹣ ,1]∩[0, ],即a∈( , ].
若a>1,則∵|f′(a)|=15a2>12a.故當(dāng)x∈[1,4a]時(shí)|f′(x)|≤12a不恒成立.
所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范圍是( , ],
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)底面是矩形的四棱錐FABCD的頂點(diǎn)F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)G在CD上且滿足DG=G.
求證:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x﹣a|.
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a= ,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)a>0時(shí),若對(duì)任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn)是直線上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線
(1)當(dāng)的橫坐標(biāo)為2時(shí),求切線方程;
(2)求證:經(jīng)過(guò)三點(diǎn)的圓必過(guò)定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)當(dāng)線段長(zhǎng)度最小時(shí),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,a2=4,且對(duì)任意m,n,p,q∈N* , 若m+n=p+q,則有am+an=ap+aq . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{ }的前n項(xiàng)和為Sn , 求證: ≤Sn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變
B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變
D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn= ,求數(shù)列的前n項(xiàng)的和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com