△ABC中,a、b、c分別是角A、B、C的對邊,若(a2+c2-b2)tanB=
3
ac,則角B的值為
 
考點:余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,變形后代入已知等式化簡,根據(jù)B為三角形內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù).
解答: 解:由余弦定理得:cosB=
a2+c2-b2
2ac
,即a2+c2-b2=2accosB,
∵(a2+c2-b2)tanB=
3
ac,
∴2accosBtanB=
3
ac,即sinB=
3
2
,
由0<B<π得,B=
π
3
3
,
故答案為:
π
3
3
點評:本題考查了余弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+3在(-∞,4]上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
(x∈(0,+∞)).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若對任意的x≥1,都有f(x)≥k(x+
3
x
)+2,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)在線段PA上是否存在點G,使得EG∥平面PFD,若存在,確定點G的位置;若不存在,說明理由;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6],
(Ⅰ)當(dāng)a=-2時,求f(x)的值域;
(Ⅱ)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f(x)=|x-1|.
(Ⅰ)解不等式 f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且 a≠0,求 f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,0是坐標(biāo)原點,且∠AOP=
π
6
,∠AOQ=α,α∈[0,π).
(Ⅰ)若點Q的坐標(biāo)是(m,
6
3
),求cos(α-
π
6
)的值;
(Ⅱ)若函數(shù)f(α)=
OP
OQ
,求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(1)求曲線C的方程;
(2)動點E在直線l上,過點E分別作曲線C的切線EA、EB,切點為A、B.
(i)求證:直線AB恒過一定點,并求出該定點的坐標(biāo);
(ii)在直線l上是否存在一點E,使得△ABM為等邊三角形(M是線段AB的中垂線與直線l的交點)?若存在,求出點E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式的值為
1
4
的是
 
.(填序號)
①2cos2 
π
12
-1  ②1-2sin275°   ③
2tan22.5°
1-tan222.5°
 ④sin 15°cos 15°.

查看答案和解析>>

同步練習(xí)冊答案