考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,根的存在性及根的個(gè)數(shù)判斷,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求函數(shù)f(x)=e
x-x-1的單調(diào)遞減區(qū)間,可以先求函數(shù)f(x)=e
x-x-1的導(dǎo)函數(shù),然后由導(dǎo)函數(shù)式小于零求出x的范圍,從而得到函數(shù)的減區(qū)間.
(Ⅱ)對(duì)F(x)=f(x)-xlnx進(jìn)行化簡(jiǎn),構(gòu)造函數(shù)h(x)=
-xlnx(x>0),研究函數(shù)h(x)的單調(diào)性和最值,即可確定F(x)=f(x)-xlnx在定義域內(nèi)是否存在零點(diǎn);
(Ⅲ)由(Ⅰ)知,當(dāng)a=1時(shí)f(x)在(0,+∞)上單調(diào)遞增,要證明f(g(x))<f(x),只要證明g(x)<x即可.
解答:
解:(Ⅰ)函數(shù)的定義域?yàn)椋?∞,+∞),a=1時(shí),f′(x)=(e
x-x-1)′′=e
x-1.
由f′(x)<0,得e
x-1<0,e
x<1,∴x<0,
所以函數(shù)的單調(diào)減區(qū)間為(-∞,0),單調(diào)增區(qū)間是(0,+∞).
(Ⅱ)函數(shù)F(x)=f(x)-xlnx的定義域?yàn)椋?,+∞),
由F(x)=0,得a=
-lnx(x>0),
令h(x)=
-lnx(x>0),
則h′(x)=
,
由于x>0,e
x-1>0,可知當(dāng)x>1,h′(x)>0;當(dāng)0<x<1時(shí),h′(x)<0,
故函數(shù)h(x)在(0,1)上單調(diào)遞減,在(1,2]上單調(diào)遞增,故h(x)≥h(1)=e-1.
又h(2)=
當(dāng)a=1時(shí),對(duì)?x>0,有f(x)>f(lna)=0,即e
x-1>x,即
>1,
當(dāng)e-1<a<
<e-1時(shí),函數(shù)F(x)有兩個(gè)不同的零點(diǎn);
當(dāng)a=e-1或a=
時(shí),函數(shù)F(x)有且僅有一個(gè)零點(diǎn);
當(dāng)a<e-1或a>
時(shí),函數(shù)F(x)沒(méi)有零點(diǎn).
(Ⅲ)由(Ⅰ)知,當(dāng)a=1時(shí)f(x)在(0,+∞)上單調(diào)遞增,且f(0)=0;
∴對(duì)x>0時(shí),有f(x)>0,則e
x-1>x;
故對(duì)任意x>0,g(x)=ln(e
x-1)-lnx>0;
所以,要證f[g(x)]<f(x),
只需證:?x>0,g(x)<x;
只需證:?x>0,ln(e
x-1)-lnx<x;
即證:ln(e
x-1)<lnx+lne
x;
即證:?x>0xe
x>e
x-1;
所以,只要證:?x>0xe
x-e
x+1>0;
令H(x)=xe
x-e
x+1,則H′(x)=xe
x>0;
故函數(shù)H(x)在(0,+∞)上單調(diào)遞增;
∴H(x)>H(0)=0;
∴對(duì)?x>0,xe
x-e
x+1>0成立,即g(x)<x,
∴f[g(x)]<f(x).
點(diǎn)評(píng):本題以函數(shù)為載體,主要考查導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)在研究函數(shù)的單調(diào)性和最值中的應(yīng)用,考查恒成立問(wèn)題的解決方法,屬于中檔題.