1.在△ABC中,點E滿足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,則m-n=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

分析 根據(jù)向量的加減的幾何意義即可求出答案

解答 解:∵點E滿足$\overrightarrow{BE}=3\overrightarrow{EC}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{3}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴m=$\frac{1}{4}$,n=$\frac{3}{4}$,
∴m-n=-$\frac{1}{2}$,
故選:B

點評 本題考查了向量加減的幾何意義,這里利用平面向量基本定理,進行轉(zhuǎn)化計算,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\overrightarrow{a}$=(-1,3)與$\overrightarrow$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow$的坐標,并求|5$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點與它的一個頂點的連線構(gòu)成等腰直角三角形,直線x+y=0與以橢圓C的右頂點為圓心,以2b為半徑的圓相交所得的弦長為2$\sqrt{3}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設過橢圓C右焦點F2的直線l與橢圓交于點P、Q,若以OP,OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設△ABC的面積為S1,它的外接圓面積為S2,若△ABC的三個內(nèi)角大小滿足A:B:C=3:4:5,則$\frac{{S}_{1}}{{S}_{2}}$的值為( 。
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在平面直角坐標系中,兩點P1(x1,y1),P2(x2,y2)間的“L距離”定義為:||P1P2||=|x1-x2|+|y1-y2|,則平面內(nèi)與x軸上兩個不同的定點F1,F(xiàn)2的“L距離”之和等于定值(大于||F1F2||)的點的軌跡可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五個不同的根,則實數(shù)a的取值范圍為( 。
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn),G分別是棱BC,CC1,CD的中點,平面α過點B1且與平面EFG平行,則平面α被該正方體外接球所截得的截面圓的面積為為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若實數(shù)x、y滿足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,則x-2y的取值范圍是[-7,13].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某校高三(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(1)求分數(shù)在[50,60)內(nèi)的頻率、全班人數(shù)及分數(shù)在[80,90)內(nèi)的頻數(shù);
(2)若要從分數(shù)在[80,100)內(nèi)的試卷中任取兩份分析學生的失分情況,求在抽取的試卷中,至少有一份試卷的分數(shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

同步練習冊答案