9.設(shè)△ABC的面積為S1,它的外接圓面積為S2,若△ABC的三個內(nèi)角大小滿足A:B:C=3:4:5,則$\frac{{S}_{1}}{{S}_{2}}$的值為( 。
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

分析 根據(jù)△ABC的三個內(nèi)角大小滿足A:B:C=3:4:5,可得A=45°,B=60°,C=75°,△ABC的面積為S1=$\frac{1}{2}$acsinB,外接圓面積為S2=πR2.利用正弦定理把a(bǔ)與R的關(guān)系建立等式,可得$\frac{{S}_{1}}{{S}_{2}}$的值.

解答 解:在△ABC中,∵△ABC的三個內(nèi)角大小滿足A:B:C=3:4:5,
∴A=45°,B=60°,C=75°,
那么△ABC的面積為S1=$\frac{1}{2}$acsinB=$\frac{1}{2}$a2$\frac{sinCsinB}{sinA}$=$\frac{1}{2}$$\frac{sin75°sin60°}{sin45°}$a2
外接圓面積為S2=πR2,R=$\frac{a}{2sinA}$,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{1}{2}acsinB}{π{R}^{2}}=\frac{3+\sqrt{3}}{4π}$.
故選D.

點(diǎn)評 本題主要考查了正弦定理的運(yùn)用和計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為2+2$\sqrt{5}$,體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;正項(xiàng)數(shù)列{an}滿足an+1=f(an).?dāng)?shù)列{bn},{cn}分別滿足|bn+1-bn|=2,cn+12=4cn2
(1)若數(shù)列{bn},{cn}為遞增數(shù)列,且b1=1,c1=-1,求{bn},{cn}的通項(xiàng)公式;
(2)在(1)的條件下,若g(n)=$\frac{_{n}}{f(n)-\frac{1}{2}}$(n≥1,n∈N*),求g(n)的最小值;
(3)已知a1=$\frac{1}{3}$,是否存在非零整數(shù)λ,使得對任意n∈N*,都有l(wèi)og3($\frac{1}{\frac{1}{2}-{a}_{1}}$)+log3($\frac{1}{\frac{1}{2}-{a}_{2}}$)+…+log3($\frac{1}{\frac{1}{2}-{a}_{n}}$)>-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)lnx+2x-3,x≥1.
(1)試判斷函數(shù)f(x)的零點(diǎn)個數(shù);
(2)若函數(shù)g(x)=(x-a)lnx+$\frac{a(x-1)}{x}$在[1,+∞)上為增函數(shù),求整數(shù)a的最大值.(可能要用的數(shù)據(jù):ln1.59≈0.46;ln1.60≈0.47;$\frac{400}{41}$≈9.76)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.({t為參數(shù),0<α<\frac{π}{2}})$,若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+4cosθ=ρ(ρ≥0,0≤θ≤2π).
(Ⅰ)當(dāng)$α=\frac{π}{3}$時,求直線l的普通方程;
(Ⅱ)若直線l與曲線C相交A,B兩點(diǎn).求證:$\overline{OA}$•$\overline{OB}$是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,E上一點(diǎn)P到右焦點(diǎn)距離的最小值為1.
(1)求橢圓E的方程;
(2)過點(diǎn)(0,2)的直線交橢圓E于不同的兩點(diǎn)A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,點(diǎn)E滿足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,則m-n=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(x-$\frac{2}{x}$)n的展開式中第二項(xiàng)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,則直線y=nx與曲線y=x2圍成的封閉圖形的面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與雙曲線C2:x2-y2=1有公共的焦點(diǎn),雙曲線C2的一條漸近線與以橢圓C1的長軸為直徑的圓相交于A、B兩點(diǎn),與橢圓C1交于M、N兩點(diǎn),若$AB=\sqrt{2}MN$,則橢圓C1的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{3}+{y}^{2}=1$.

查看答案和解析>>

同步練習(xí)冊答案