精英家教網 > 高中數學 > 題目詳情
13.從區(qū)間[-1,1]內隨機取出一個數a,使3a+1>0的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 本題利用幾何概型求概率,首先解得的區(qū)間長度以及與區(qū)間[-1,1]的長度,求比值即得.

解答 解:由3a+1>0,解得:a>-$\frac{1}{3}$,
故滿足條件的概率p=$\frac{1+\frac{1}{3}}{1+1}$=$\frac{2}{3}$,
故選:C.

點評 本題主要考查了幾何概型,簡單地說,如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.數列{an}的各項均為正數,其前n項和為Sn,已知$\frac{n{a}_{n+1}}{{a}_{n}}$$-\frac{(n+1){a}_{n}}{{a}_{n+1}}$=1,且a1=$\frac{π}{3}$,則tanSn的取值集合是( 。
A.{0,$\sqrt{3}$}B.{0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$}C.{0,$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$}D.{0,$\sqrt{3}$,-$\sqrt{3}$}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.如圖是一個幾何體挖去另一個幾何體所得的三視圖,若主視圖中長方形的長為2,寬為1,則該幾何體的體積為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知空間四邊形ABCD,滿足|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值( 。
A.-1B.0C.$\frac{21}{2}$D.$\frac{33}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.設全集U=R,集合A={x|x>0},B={x|x2-x-2<0},則A∩(∁UB)=( 。
A.(0,2]B.(-1,2]C.[-1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的一點到雙曲線的左、右焦點的距離之差為4,若拋物線y=ax2上的兩點A(x1,y1),B(x2,y2)關于直線y=x+m對稱,且x1x2=-$\frac{1}{2}$,則m的值為( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.在直角坐標系xOy中,直線l的參數方程為$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t為參數,a∈R),曲線C的參數方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數),設直線l與曲線C交于A、B兩點,當弦長|AB|最短時,直線l的普通方程為x+y-4=0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知函數f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,則a的取值范圍是(  )
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.化簡:
(1)lg8000+lg125-10lg4;
(2)(log32+log92)•(log43+log83)
(3)$\sqrt{2}$×$\root{4}{2}$×$\root{8}{2}$×…×$\root{{2}^{n}}{2}$…(n∈N*

查看答案和解析>>

同步練習冊答案