已知AB=2,∠B=60°,AC=b,若b∈M時△ABC能唯一確定,則集合M=
 
考點:余弦定理的應用
專題:計算題,解三角形
分析:利用正弦定理列出關系式,將各自的值代入表示出b,根據(jù)C的范圍求出sinC的范圍,即可確定出b的范圍.
解答: 解:∵△ABC中,∠ABC=60°,AC=b,AB=2,
∴由正弦定理
a
sinA
=
b
sinB
=
c
sinC
,得:
2
sinC
=
b
sin60°
,即b=
3
sinC

∵0°<C<120°,∴0<sinC≤1,
且b≥2,
則b的取值范圍為M=[2,+∞)∪{
3
}.
故答案為:[2,+∞)∪{
3
}.
點評:此題考查了正弦定理,以及正弦函數(shù)的定義域與值域,熟練掌握正弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-3)2=9,直線l1:y=kx與圓C交于P、Q兩個不同的點,M為P、Q的中點.
(Ⅰ)已知A(3,0),若
AP
AQ
=0
,求實數(shù)k的值;
(Ⅱ)求點M的軌跡方程;
(Ⅲ)若直線l1與l2:x+y+1=0的交點為N,求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a,b滿足3a+b=1,則
a+
1
2
+
b+
1
2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(x+1)+log2
1
1-x

(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若關于x的方程f(x)-m=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,
AB
=4
MB
,且PM⊥CD,AB=BC=2PB=2AD.
(1)證明:面PAB⊥面ABCD;
(2)求直線DM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位向量
a
b
的夾角是鈍角,當t∈R時,|
a
-t
b
|的最小值為
3
2

(Ⅰ)若
c
a
+(1-λ)
b
,其中λ∈R,求|
c
|的最小值;
(Ⅱ)若
c
滿足(
c
-
a
)(
c
-
b
)=
3
2
,求|
c
|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
7
4

(1)求f(x)的解析式;
(2)求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在函數(shù)y=2x+m的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x3(x<0)
-tanx(0≤x<
π
2
)
,則f(f(
π
4
))=(  )
A、1B、-2C、2D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心是原點,焦點到漸近線的距離為2
3
,一條準線方程為y=-1,則其漸近線方程為
 

查看答案和解析>>

同步練習冊答案