11.已知函數(shù)f(x)=1-$\sqrt{1-2x}$,g(x)=lnx,對于任意m≤$\frac{1}{2}$,都存在n∈(0,+∞),使得f(m)=g(n),則n-m的最小值為(  )
A.e-$\frac{1}{2}$B.1C.$\sqrt{e}$-$\frac{3}{8}$D.$\frac{3}{4}$

分析 由題意可得1-$\sqrt{1-2m}$=lnn;從而可得n=${e}^{1-\sqrt{1-2m}}$;令1-$\sqrt{1-2m}$=t,t<1;則m=t-$\frac{{t}^{2}}{2}$,從而得到y(tǒng)=n-m=et-t+$\frac{{t}^{2}}{2}$;求導(dǎo)求函數(shù)的最小值即可.

解答 解:由m≤$\frac{1}{2}$知1-$\sqrt{1-2m}$≤1;
由f(m)=g(n)可化為
1-$\sqrt{1-2m}$=lnn;
故n=${e}^{1-\sqrt{1-2m}}$;
令1-$\sqrt{1-2m}$=t,t≤1;
則m=t-$\frac{{t}^{2}}{2}$,
則y=n-m=et-t+$\frac{{t}^{2}}{2}$;
故y′=et+t-1在(-∞,1]上是增函數(shù),
且y′=0時,t=0;
故y=n-m=et-t+$\frac{{t}^{2}}{2}$在t=0時有最小值,
故n-m的最小值為1;
故選:B.

點(diǎn)評 本題考查了函數(shù)恒成立問題,利用導(dǎo)數(shù)法以及換元法轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a>b>0,下列命題為真命題的是( 。
A.a2<b2B.a2<abC.$\frac{a}$<1D.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.A,B,C,D四人站成一排,在A、B相鄰的條件下,B、C不相鄰的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-sin2x-2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)函數(shù)y=f(x)的圖象向右移動$\frac{π}{12}$個單位長度后得到以y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知1=12,2+3+4=32,3+4+5+6+7=52,…,依此規(guī)律可以得到的第n個式子為(  )
A.n+(n+1)+(n+2)+…+2n=(n-1)2B.n+(n+1)+(n+2)+…+3n=(n-1)2
C.n+(n+1)+(n+2)+…+(2n+2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,若$\sqrt{a+\frac{7}{t}}$=a$\sqrt{\frac{7}{t}}$(a,t均為正實(shí)數(shù)),類比以上等式,可推測a,t的值,則t-a=(  )
A.31B.41C.55D.71

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線ρsinθ=2與圓ρ=2的位置關(guān)系是相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在Rt△ABC 中,∠C=90°,BE平分∠ABC交AC于E,D是AB上一點(diǎn),且DE⊥BE.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2$\sqrt{6}$,AE=6$\sqrt{2}$,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,三棱錐A-BCD的棱長均為2$\sqrt{3}$,將平面ACD沿CD旋轉(zhuǎn)至平面PCD,且使得AP∥平面BCD.
(Ⅰ)求二面角A-CD-P的余弦值;
(Ⅱ)求直線AB與平面PCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案