5.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax,a∈R$,若f(x)在區(qū)間$(-∞,-\frac{3}{2})$上存在單調(diào)遞減區(qū)間,求a的取值范圍.

分析 先求出f′(x),由題意得:?x∈($(-∞,-\frac{3}{2})$上-2使得f′(x)<0,令g(x)=-x2-2x,只需求出g(x)的最大值,從而求出a的范圍.

解答 解:∵函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax,a∈R$,
∴f′(x)=x2+2x+a,
∵函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax,a∈R$,若f(x)在區(qū)間$(-∞,-\frac{3}{2})$上存在單調(diào)遞減區(qū)間,
∴?x∈($(-∞,-\frac{3}{2})$上使得f′(x)<0,
即:?x∈($(-∞,-\frac{3}{2})$上-2使得a<-x2-2x,
令g(x)=-x2-2x,
只需求出g(x)=-x2-2x在區(qū)間$(-∞,-\frac{3}{2})$上的最大值即可,
而g(x)max=g(-$\frac{3}{2}$)=$\frac{3}{4}$,
∴a的取值范圍是(-∞,$\frac{3}{4}$).

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查等價轉(zhuǎn)化思想的綜合運(yùn)用,考查考查分析與理解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.甲、乙兩人從1,2,…,15這15個數(shù)中,依次任取一個數(shù)(不放回).則在已知甲取到的數(shù)是5的倍數(shù)的情況下,甲所取的數(shù)大于乙所取的數(shù)的概率是(  )
A.$\frac{1}{2}$B.$\frac{7}{15}$C.$\frac{8}{15}$D.$\frac{9}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若2sinA=3sinB=4sinC,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線l與橢圓C:$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{4}$=1相交于A,B兩點(diǎn),若直線l的方程為x-2y+1=0,則線段AB的中點(diǎn)坐標(biāo)是( 。
A.(-$\frac{1}{3}$,-$\frac{1}{2}$)B.($\frac{1}{3}$,-$\frac{1}{3}$)C.(1,1)D.(-$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點(diǎn)的等腰直角三角形,點(diǎn)E是線段GC的中點(diǎn).現(xiàn)將△HDA和△GDC分別沿著DA,DC翻折,直到點(diǎn)H和G重合為點(diǎn)P.連接PB,得如圖2的四棱錐.

(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角C-PB-D大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.電商中“貓狗大戰(zhàn)”在節(jié)日期間的競爭異常激烈,在剛過去的618全民年中購物節(jié)中,某東當(dāng)日交易額達(dá)1195億元,現(xiàn)從該電商“剁手黨”中隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成了6組,得到如下所示的頻率直方圖.
(1)求顧客年齡的眾數(shù),中位數(shù),平均數(shù)(每一組數(shù)據(jù)用中點(diǎn)做代表);
(2)用樣本數(shù)據(jù)的頻率估計(jì)總體分布中的概率,則從全部顧客中任取3人,記隨機(jī)變量X為顧客中年齡小于25歲的人數(shù),求隨機(jī)變量X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={1,2,3},B={2,4,6},則A∩B=(  )
A.2B.{2}C.{2,3,4}D.{1,2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若等比數(shù)列{an}滿足:a2+a4=5,a3a5=1且an>0,則an=2-n+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,b=1,c=$\sqrt{3}$,∠B=30°,則a的值為( 。
A.1或2B.1C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案