已知點P(2,0)及圓C:x2+y2-6x+4y+4=0。
(1)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(2)設(shè)過點P的直線l1與圓C交于M、N兩點,當|MN|=4時,求以線段MN為直徑的圓Q的方程;
(3)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由。
解:(1)設(shè)直線的斜率為k(k存在),
則方程為,即,
又圓C的圓心為(3,-2),半徑r=3,
, 解得
所以,直線的方程為,即,
的斜率不存在時,的方程為x=2,經(jīng)驗證x=2也滿足條件。
(2)由于,而弦心距,
所以,
所以P恰為MN的中點,
故以MN為直徑的圓Q的方程為。
(3)把直線,代入圓C的方程,
消去y,整理得
由于直線交圓C于A,B兩點,
,
,解得:,
則實數(shù)a的取值范圍是
設(shè)符合條件的實數(shù)a存在,由于垂直平分弦AB,故圓心C(3,-2)必在上,
所以的斜率,而,所以,
由于,
故不存在實數(shù)a,使得過點P(2,0)的直線垂直平分弦AB。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設(shè)過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓的方程;
(Ⅲ)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若圓C與圓x2+y2+2x-2y+m=0外切,求m的值;
(2)設(shè)過點P的直線l1與圓C交于M、N兩點,當|MN|=4時,求以線段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若直線l過點P且被圓C截得的弦長為4
2
,求直線l的方程;
(2)設(shè)過點P的直線l1與圓C交于M、N兩點,當P恰為MN的中點時,求以線段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,0)及⊙C:x2+y2-6x+4y+4=0.

(1)當直線l過點P且與圓心C的距離為1時,求直線l的方程;

(2)設(shè)過點P的直線與⊙C交A、B兩點,當|AB|=4時,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年天津市漢沽區(qū)高二(上)期中數(shù)學試卷(必修2)(解析版) 題型:解答題

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設(shè)過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓的方程;
(Ⅲ)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案