13.若要使如圖程序框圖輸出的s值是$\frac{50}{51}$,其中菱形判斷框內(nèi)填入的條件是( 。
A.i=0B.i>50C.i≥51D.i≥50

分析 本程序的功能是計算S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{i(i+1)}$=1-$\frac{1}{i+1}$,根據(jù)程序的功能進(jìn)行求解即可.

解答 解:本程序的功能是計算S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{i(i+1)}$=1-$\frac{1}{i+1}$,
由1-$\frac{1}{i+1}$=$\frac{50}{51}$,得i=50,
即i=50不成立,i=51成立,
故斷框內(nèi)可填入的條件i≥51,
故選:C

點(diǎn)評 本題主要考查程序框圖的識別和判斷,根據(jù)裂項(xiàng)法進(jìn)行求和是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3|$\overrightarrow$|=|$\overrightarrow{a}$-3$\overrightarrow$|=3,則$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=∠A1AC=60°,平面AA1CC1⊥平面ABCD.
(1)證明:BD⊥AA1
 (2)求二面角D-AA1-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a=(-1,x)$,$\overrightarrow b=(2,y)$且$\overrightarrow a⊥\overrightarrow b$,則|$\overrightarrow a+\overrightarrow b|$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(Ⅰ)若b2=ac,判斷△ABC的形狀.
(Ⅱ)求cos(A+C)+$\sqrt{3}$sinB的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x|$\frac{1}{x}$>1},N={{x|y=lgx},則( 。
A.N⊆MB.N∩M=∅C.M⊆ND.N∪M=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.P為圓錐曲線上一點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),|PF1|:|F1F2|:|PF2|=4:3:2,則該圓錐曲線的離心率e=$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,M,E,F(xiàn)分別為PQ,AB,BC的中點(diǎn),則直線ME與平面ABCD所成角的正切值為$\sqrt{2}$;異面直線EM與AF所成角的余弦值是$\frac{\sqrt{30}}{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知tanx=2.
(1)求$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x的值;    
(2)求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

同步練習(xí)冊答案