.已知數(shù)列{an}滿足a1=1,a2=r(r>0),數(shù)列{bn}是公比為q的等比數(shù)列(q>0),bn=anan+1,cn=a2n-1+a2n,求cn。
Cn=(1+r)qn-1
解析試題分析:∵bn+1=bnq, ∴an+1an+2=anan+1q ∴an+2=anq,即
由a1=1,a3=q,a5=q2,……,知奇數(shù)項(xiàng)構(gòu)成一個(gè)等比數(shù)列,故a2n-1=qn-1
由a2=r,a4=rq,a6=rq2,……,知偶數(shù)項(xiàng)也構(gòu)成一個(gè)等比數(shù),故a2n=rqn-1
∴Cn=(1+r)qn-1
考點(diǎn):本題主要考查等比數(shù)列的概念、通項(xiàng)公式及等比數(shù)列的性質(zhì)。
點(diǎn)評: 靈活運(yùn)用等比數(shù)列的性質(zhì),結(jié)合通項(xiàng)公式,達(dá)到解題目的。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù)若對任意的都成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S15="225."
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)bn=+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
等比數(shù)列的各項(xiàng)均為正數(shù),且. (1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次方程,有兩根和,且滿足,
(1)試用表示;
(2)證明是等比數(shù)列;
(3)設(shè),,為的前n項(xiàng)和,證明,()。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com