【題目】已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對數(shù)的底數(shù)).若在x=﹣3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是 .
【答案】-1
【解析】解:f(x)=(x2+x+m)ex , f′(x)=(x2+3x+m+1)ex ,
若f(x)在x=﹣3處函數(shù)f (x)有極大值,
則f′(﹣3)=0,解得:m=﹣1,
故f(x)=(x2+x﹣1)ex ,
f′(x)=(x2+3x)ex ,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<﹣3,
故f(x)在(﹣∞,﹣3)遞增,在(﹣3,0)遞減,在(0,+∞)遞增,
故f(x)極小值=f(0)=﹣1,
所以答案是:﹣1.
【考點精析】本題主要考查了函數(shù)的極值與導數(shù)的相關知識點,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大。
(Ⅱ)設y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當y取得最大值時△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為迎接校慶,我校準備在直角三角形ABC內的空地上植造一塊“綠地△ABD”,規(guī)劃在△ABD的內接正方形BEFG內種花,其余地方種草,若AB=a,∠DAB=θ,種草的面積為S1 , 種花的面積為S2 , 比值 稱為“規(guī)劃和諧度”.
(1)試用a,θ表示S1 , S2;
(2)若a為定值,BC足夠長,當θ為何值時,“規(guī)劃和諧度”有最小值,最小值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABO中,設 = , = ,| |=| |=1,C為AB上靠近A點的三等分點,過C作AB的垂線l,設P為垂線上任一點, = ,則 ( ﹣ )=( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,設向量 =(a,c), =(cosC,cosA).
(1)若 ∥ ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為等差數(shù)列,a1=2,{an}的前n項和為Sn , 數(shù)列{bn}為等比數(shù)列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4對任意的n∈N*恒成立.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)是否存在非零整數(shù)λ,使不等式sin < 對一切n∈N*都成立?若存在,求出λ的值;若不存在,說明理由.
(3)各項均為正整數(shù)的無窮等差數(shù)列{cn},滿足c39=a1007 , 且存在正整數(shù)k,使c1 , c39 , ck成等比數(shù)列,若數(shù)列{cn}的公差為d,求d的所有可能取值之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某石化集團獲得了某地深海油田區(qū)塊的開發(fā)權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質資料,進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據資料見如表:
(參考公式和計算結果: , , , )
(1)1~6號井位置線性分布,借助前5組數(shù)據(坐標)求得回歸直線方程為,求的值,并估計的預報值;
(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的(, 精確到0.01),設, ,當均不超過10%時,使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質井數(shù)的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=asinxcosx﹣ acos2x+ a+b(a>0)
(1)寫出函數(shù)的單調遞減區(qū)間;
(2)設x∈[0, ],f(x)的最小值是﹣2,最大值是 ,求實數(shù)a,b的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com