在△ABC中,
a
sinA
=
b
cosB
=
c
cosC
=2
,則此三角形的面積為______.
a
sinA
=
b
cosB

∴根據(jù)正弦定理
a
sinA
=
b
sinB
,可得cosB=sinB.
∵B∈(0,π),∴B=
π
4

同理可得C=
π
4
,得A=π-(A+B)=
π
2

∴△ABC是等腰直角三角形.
a
sinA
=2
,∴a=2sinA=2sin
π
2
=2.
由此可得b=c=
2
2
a=
2
,
∴此三角形的面積S=
1
2
bc=
1
2
×
2
×
2
=1.
故答案為:1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)△ABC中,a=8,B=60°,C=75°,求b;
(2)△ABC中,B=30°,b=4,c=8,求C、A、a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,隔河看兩目標(biāo)A、B,但不能到達(dá),在岸邊選取相距
3
km的C、D兩點(diǎn),并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,AB=1,BC=2,則角C的取值范圍是( 。
A.(0,
π
6
]
B.(0,
π
6
]
C.(
π
6
,
π
2
]
D.[
π
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)△ABC的三內(nèi)角A、B、C的對(duì)邊長分別為a、b、c,已知bcosC=(2a-c)cosB.
(Ⅰ)求角B的大;
(Ⅱ)若x∈[0,π),求函數(shù)f(x)=sin(x-B)+sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知
a
3
cosA
=
c
sinC
,
(Ⅰ)求A的大;
(Ⅱ)若a=6,S=9
3
,求b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果一個(gè)等腰三角形的底邊長是周長的,那么它的一個(gè)底角的余弦值為(  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三角形ABC中,如果A=60º,C=45º,且a=,則c=        

查看答案和解析>>

同步練習(xí)冊答案