如圖,在邊長為4的菱形
中,
.點(diǎn)
分別在邊
上,點(diǎn)
與點(diǎn)
不重合,
.沿
將
翻折到
的位置,使平面
平面
.
(1)求證:
平面
;
(2)設(shè)點(diǎn)
滿足
,試探究:當(dāng)
取得最小值時(shí),直線
與平面
所成角的大小是否一定大于
?并說明理由.
(1)證明:∵ 菱形
的對(duì)角線互相垂直,∴
,∴
,
∵
,∴
.
∵ 平面
⊥平面
,平面
平面
,且
平面
,
∴
平面
, ∵
平面
,∴
……………4分
(2)如圖,以
為原點(diǎn),建立空間直角坐標(biāo)系
.
設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211249068636.png" style="vertical-align:middle;" />,所以
為等邊三角形,
故
,
.又設(shè)
,則
,
.
所以
,
,
,
故
,
所以
,
當(dāng)
時(shí),
.此時(shí)
,………………………………6分
設(shè)點(diǎn)
的坐標(biāo)為
,由(1)知,
,則
,
,
,
.所以
,
,
∵
, ∴
.
∴
,∴
. 10分
設(shè)平面
的法向量為
,則
.
∵
,
,∴
取
,解得:
, 所以
.……………………………… 8分
設(shè)直線
與平面
所成的角
,
∴
.……………………………………………… 10分
又∵
∴
. ∵
,∴
.
因此直線
與平面
所成的角大于
,即結(jié)論成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直四棱柱
ABCD-A1B1C1D1中,底面
ABCD為等腰梯形,
AB∥
CD,
AB=4,
BC=
CD=2,
AA1=2,
E,
E1,
F分別是棱
AD,
AA1,
AB的中點(diǎn).
(1)證明:直線
EE1∥平面
FCC1;
(2)求二面角
B-FC1-
C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖1, 在直角梯形
中,
,
,
,
為線段
的中點(diǎn). 將
沿
折起,使平面
平面
,得到幾何體
,如圖2所示.
(1)求證:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題12分)如圖,在棱長為ɑ的正方體ABCD-A
1B
1C
1D
1中,E、F、G分別是CB、CD、CC
1的中點(diǎn).
(1)求直線
C與平面ABCD所成角的正弦的值;
(2)求證:平面A B
1D
1∥平面EFG;
(3)求證:平面AA
1C⊥面EFG .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,正方形AA
1D
1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB上一點(diǎn)
(I) 當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),求證;BD
1//平面A
1DE
(II)求點(diǎn)A
1到平面BDD
1的距離;
(III) 當(dāng)
時(shí),求二面角D
1-EC-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,點(diǎn)P是正方形ABCD外一點(diǎn),PA
平面ABCD,PA=AB=2,且E、F分別是AB、PC的中點(diǎn).
(1)求證:EF//平面PAD;
(2)求證:EF
平面PCD;
(3)求:直線BD與平面EFC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
ABCD是正方形,
PA⊥平面
ABCD,且
PA=AB=2,
E、
F是側(cè)棱
PD、
PC的中點(diǎn)。
(1)求證:
平面
PAB;
(2)求直線
PC與底面
ABCD所成角
的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA="AD=1,AB=2,"
,
.
(1)求證:平面
平面
;
(2)求三棱錐D-PAC的體積;
(3)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正方體
的棱長為1,
是
的中點(diǎn),則
是平面
的距離是( 。
查看答案和解析>>