【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個零件中其尺寸在之外的零件數(shù),求的數(shù)學(xué)期望;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.

(。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;

(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得,其中

抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機變量服從正態(tài)分布,則

【答案】(1), ;(2)(i)見解析,(ii) ,.

【解析】試題分析:(1)根據(jù)題設(shè)條件知一個零件的尺寸在之內(nèi)的概率為0.9974,則零件的尺寸在之外的概率為0.0026,而,進而可以求出的數(shù)學(xué)期望.(2)(i)判斷監(jiān)控生產(chǎn)過程的方法的合理性,重點是考慮一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在之外的零件的概率是大還是小,若小即合理;(ii)根據(jù)題設(shè)條件算出的估計值和的估計值,剔除之外的數(shù)據(jù)9.22,算出剩下數(shù)據(jù)的平均數(shù),即為的估計值,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差,即為的估計值.

試題解析:(1)抽取的一個零件的尺寸在之內(nèi)的概率為0.9974,從而零件的尺寸在之外的概率為0.0026,故.因此

.

的數(shù)學(xué)期望為.

(2)(i)如果生產(chǎn)狀態(tài)正常,一個零件尺寸在之外的概率只有0.0026,一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很小.因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程學(xué)科&網(wǎng)可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.

(ii)由,得的估計值為, 的估計值為,由樣本數(shù)據(jù)可以看出有一個零件的尺寸在之外,因此需對當(dāng)天的生產(chǎn)過程進行檢查.

剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為,因此的估計值為10.02.

,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為

因此的估計值為.

點睛:數(shù)學(xué)期望是離散型隨機變量中重要的數(shù)學(xué)概念,反映隨機變量取值的平均水平.求解離散型隨機變量的分布列、數(shù)學(xué)期望時,首先要分清事件的構(gòu)成與性質(zhì),確定離散型隨機變量的所有取值,然后根據(jù)概率類型選擇公式,計算每個變量取每個值的概率,列出對應(yīng)的分布列,最后求出數(shù)學(xué)期望.正態(tài)分布是一種重要的分布,之前考過一次,尤其是正態(tài)分布的原則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,點關(guān)于坐標(biāo)原點對稱,直線垂直于軸,垂足為,與拋物線交于不同的兩點, ,且.

(1)求點的橫坐標(biāo).

(2)若以, 為焦點的橢圓過點

(。┣髾E圓的標(biāo)準(zhǔn)方程;

(ⅱ)過點作直線與橢圓交于 兩點,設(shè),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CMBD交于點P.(1) =(3,5),求點C的坐標(biāo);(2) 當(dāng)||=||時,求點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知:“直線與圓相交”; :“有一正根和一負(fù)根”.若為真, 為真,求的取值范圍.

(2)已知橢圓 與圓 ,雙曲線與橢圓有相同的焦點,它的兩條漸近線恰好與圓相切.求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形, 平面, .試結(jié)合向量法:(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列命題:①b=0,c>0時,方程f(x)=0只有一個實數(shù)根;②c=0時,y=f(x)是奇函數(shù);③方程f(x)=0至多有兩個實根.上述三個命題中所有正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)利用暑假到某縣進行社會實踐,對該縣的養(yǎng)雞場連續(xù)六年來的規(guī)模進行調(diào)查研究,得到如下兩個不同的信息圖:

(A)圖表明:從第1年平均每個養(yǎng)雞場出產(chǎn)1萬只雞上升到第6年平均每個養(yǎng)雞場出產(chǎn)2萬只雞:

(B)圖表明:由第1年養(yǎng)雞場個數(shù)30個減少到第6年的10.

請你根據(jù)提供的信息解答下列問題:

(1)第二年的養(yǎng)雞場的個數(shù)及全縣出產(chǎn)雞的總只數(shù)各是多少?

(2)哪一年的規(guī)模最大?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)= x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時C(x)=51x+ ﹣1450(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線 對稱;③在 上是增函數(shù).”的一個函數(shù)為(
A.
B. ??
C.
D.

查看答案和解析>>

同步練習(xí)冊答案