省工商局于2003年3月份,對全省流通領(lǐng)域的飲料進(jìn)行了質(zhì)量監(jiān)督抽查,結(jié)果顯示,某種剛進(jìn)入市場的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會,選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是________.


0.64

解析:記“第一瓶x飲料合格”為事件A1,“第二瓶x飲料合格”為事件A2,A1與A2是相互獨(dú)立事件,“甲喝2瓶x飲料都合格就是事件A1、A2同時發(fā)生,根據(jù)相互獨(dú)立事件的概率乘法公式得P(A1·A2)=P(A1)·P(A2)=0.8×0.8=0.64.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)x∈N, 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知(2-x)50=a0+a1x+a2x2+…+a50x50,其中a0,a1,a2…,a50是常數(shù),計算(a0+a2+a4+…+a50)2-(a1+a3+a5+…+a49)2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2只正品,每次取一個,取出后不放回,直到取出2個正品為止.設(shè)X為取出的次數(shù),求X的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 如圖,從A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)這6個點(diǎn)中隨機(jī)選取3個點(diǎn),將這3個點(diǎn)及原點(diǎn)O兩兩相連構(gòu)成一個“立體”,記該“立體”的體積為隨機(jī)變量V(如果選取的3個點(diǎn)與原點(diǎn)在同一個平面內(nèi),此時“立體”的體積V=0).

(1) 求V=0的概率;

(2) 求V的分布列及數(shù)學(xué)期望E(V). 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


A高校自主招生設(shè)置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設(shè)置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進(jìn)入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、、p2.

(1) 求學(xué)生甲不能通過A高校自主招生考試的概率;

(2) 設(shè)ξ為學(xué)生甲在三道程序中獲優(yōu)的次數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,除第五局甲隊(duì)獲勝的概率是外,其余每局比賽甲隊(duì)獲勝的概率都是,假設(shè)各局比賽結(jié)果相互獨(dú)立.

(1) 分別求甲隊(duì)以3∶0,3∶1,3∶2勝利的概率;

(2) 若比賽結(jié)果為3∶0或3∶1,則勝利方得3分,對方得0分;若比賽結(jié)果為3∶2,則勝利方得2分、對方得1分.求乙隊(duì)得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


甲、乙兩名射手在一次射擊中的得分為兩個相互獨(dú)立的隨機(jī)變量ξ和η,且ξ、η分布列為

ξ

1

2

3

P

a

0.1

0.6

  

η

1

2

3

P

0.3

b

0.3

(1) 求a、b的值;

(2) 計算ξ、η的期望和方差,并以此分析甲、乙的技術(shù)狀況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在一個盒子中有分別標(biāo)有數(shù)字1,2,3,4,5的5張卡片,現(xiàn)從中一次取出2張卡片,則取到的卡片上的數(shù)字之積為偶數(shù)的概率是________.

查看答案和解析>>

同步練習(xí)冊答案