【題目】經(jīng)銷商第一年購買某工廠商品的單價為(單位:元),在下一年購買時,購買單價與其上年度銷售額(單位:萬元)相聯(lián)系,銷售額越多,得到的優(yōu)惠力度越大,具體情況如下表:

上一年度

銷售額/萬元

商品單價/元

為了研究該商品購買單價的情況,為此調(diào)查并整理了個經(jīng)銷商一年的銷售額,得到下面的柱狀圖.

已知某經(jīng)銷商下一年購買該商品的單價為(單位:元),且以經(jīng)銷商在各段銷售額的頻率作為概率.

(1)求的平均估計值.

(2)為了鼓勵經(jīng)銷商提高銷售額,計劃確定一個合理的年度銷售額(單位:萬元),年銷售額超過的可以獲得紅包獎勵該工廠希望使的經(jīng)銷商獲得紅包,估計的值,并說明理由.

【答案】(1);(2)年銷售額標準為萬元時,的經(jīng)銷商可以獲得紅包.

【解析】分析:(1)先利用頻率分布表得到每個變量對應(yīng)的概率,再利用平均值的計算公式進行求解;(2)利用互斥事件的概率公式判定所在區(qū)間.

詳解:(1)由題可知:

商品單價/元

頻率

0.2

0.3

0.24

0.12

0.1

0.04

的平均估計值為:

.

(2)因為后組的頻率之和為,

而后組的頻率之和為

所以.

,解得.

所以年銷售額標準為萬元時,的經(jīng)銷商可以獲得紅包.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲袋內(nèi)摸出1個紅球的概率是,從乙袋內(nèi)摸出1個紅球的概率是,從兩袋內(nèi)各摸出1個球,則等于( )

A. 2個球不都是紅球的概率B. 2個球都是紅球的概率

C. 至少有1個紅球的概率D. 2個球中恰好有1個紅球的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對位顧客進行獎勵,規(guī)定:每位顧客從一個裝有個標有面值的球的袋中一次性隨機摸出個球,球上所標的面值之和為該顧客所獲的獎勵額.

(1)若袋中所裝的個球中有個所標的面值為元,其余個均為元,求顧客所獲的獎勵額的分布列及數(shù)學期望;

(2)商場對獎勵總額的預(yù)算是元,并規(guī)定袋中的個球只能由標有面值為元和元的兩種球組成,或標有面值元和元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡.請對袋中的個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,的中點.

1)求證:平面;

2)在線段上是否存在一點,使得平面平面?若存在,證明你的結(jié)論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形,側(cè)面底面.

1)求證:平面平面;

2)當三棱錐體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有120名工人,其年齡都在20~ 60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分成四組,其頻率分布直方圖如下圖所示.工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設(shè)備,F(xiàn)采用分層抽樣法從全廠工人中抽取一個容量為20的樣本參加新設(shè)備培訓,培訓結(jié)束后進行結(jié)業(yè)考試。已知各年齡段培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示:

若隨機從年齡段[20,30)和[40,50)的參加培訓工人中各抽取1人,則這兩人培訓結(jié)業(yè)考試成績恰有一人優(yōu)秀的概率為___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓的方程為,圓的方程為,若動圓與圓內(nèi)切,與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過直線上的點作圓的兩條切線,設(shè)切點分別是,,若直線與軌跡交于,兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案