3.命題“p:1<k<9”是命題“q:方程$\frac{x^2}{9-k}$+$\frac{y^2}{k-1}$=1表示橢圓”的必要不充分條件.(填“充要”或“充分不必要”或“必要不充分”或“既不充分也不必要”)

分析 求出關(guān)于命題q中k的范圍,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:方程$\frac{x^2}{9-k}$+$\frac{y^2}{k-1}$=1表示橢圓,
則1<k<9且k≠5,
即命題q:1<k<9且k≠5,
故命題p是命題q的必要不充分條件,
故答案為:必要不充分.

點評 本題考查了充分必要條件,考查橢圓的定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.袋中混裝著10個大小相同的球(編號不同),其中6只白球,4只紅球,為了把紅球與白球區(qū)分開來,采取逐只抽取檢查,若恰好經(jīng)過6次抽取檢查,正好把所有白球和紅球區(qū)分出來了,則這樣的抽取方式共有7920種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)y=f(x)滿足條件f(0)=$\frac{1}{2}$m,f(x+1)-f(x-1)=4x-2m.(m為已知實數(shù))
(1)求函數(shù)f(x)的解析式;
(2)如果函數(shù)y=f(x)的圖象與x軸的兩個不同交點在區(qū)間(0,4)內(nèi),求實數(shù)m的取值范圍;
(3)當(dāng)函數(shù)y=f(x)的圖象與x軸有兩個交點時,這兩個交點能否在點($\frac{1}{2}$,0)的兩旁?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給定下列命題:
①“若m>-1,則方程x2+2x-m=0有實數(shù)根”的逆否命題;
②“x=1”是“x2-3x+2=0”的充分不必要條件.
③“矩形的對角線相等”的逆命題;
④“若x2+y2=0,則x,y全為零”的逆命題.
其中真命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)求f(x)的定義域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=a(x+$\frac{1}{x}}$),(x>0,a>0),點P為函數(shù)y=f(x)圖象上一動點.
(1)當(dāng)a=2時,過點P分別向y軸及直線y=2x作垂線,垂足分別為點A,B,試計算線段PA,PB長度之積PA•PB的值;
(2)作曲線y=f(x)在點P處的切線l,記直線l與y軸及直線y=ax的交點分別為M,N,試計算線段PM,PN長度比值$\frac{PM}{PN}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.十進(jìn)制數(shù)124轉(zhuǎn)化為八進(jìn)制數(shù)是(  )
A.194(8)B.233(8)C.471(8)D.174(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.討論函數(shù)f(x)=$\frac{x-2}{x+2}$ex的單調(diào)性,并證明當(dāng)x>0時,(x-2)ex+x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.$\frac{8}{3}$B.-$\frac{8}{3}$C.-6D.6

查看答案和解析>>

同步練習(xí)冊答案