精英家教網 > 高中數學 > 題目詳情

【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11,ABm,點M是棱CD的中點.

1)求異面直線B1CAC1所成的角的大;

2)是否存在實數m,使得直線AC1與平面BMD1垂直?說明理由;

3)設P是線段AC1上的一點(不含端點),滿足λ,求λ的值,使得三棱錐B1CD1C1與三棱錐B1CD1P的體積相等.

【答案】190° 2)存在,m,理由見解析 3λ

【解析】

1)根據題意只需證明平面,即可得到B1CAC1,從而可得答案.

2)存在實數m,使得直線AC1與平面BMD1垂直.只需證明BMAC1AC1D1M,即可得到直線AC1⊥平面BMD1;

3)計算,設AC1 與平面B1CD1 的斜足為O,則AO2OC1,PAO的中點,從而可得答案.

1)連接BC1,如圖所示:

由四邊形BCC1B1為正方形,可得B1CBC1,

ABCDA1B1C1D1為長方體,可得ABB1C,而ABBC1B,

B1C⊥平面ABC1,而AC1平面ABC1,∴B1CAC1,

即異面直線B1CAC1所成的角的大小為90°

2)存在實數m,使得直線AC1與平面BMD1垂直.

事實上,當m時,CM,

BC1,∴,則RtABCRtBCM,

則∠CAB=∠MBC,

∵∠CAB+ACB90°,∴∠MBC+ACB90°,即ACBM,

CC1BM,ACCC1C,∴BM⊥平面ACC1,則BMAC1,

同理可證AC1D1M,

D1MBMM,∴直線AC1⊥平面BMD1

3)∵,

AC1 與面B1CD1 的斜足為O,則AO2OC1

∴在線段AC1上取一點P,要使三棱錐B1CD1C1與三棱錐B1CD1P的體積相等,

PAO的中點,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】平面直角坐標系中,矩形、、,將矩形折疊,使O點落在線段上,設折痕所在直線的斜率為k,則k的取值范圍是( 

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的個數是( )

1)在頻率分布直方圖中,中位數左邊和右邊的直方圖的面積相等.

2)如果一組數中每個數減去同一個非零常數,則這一組數的平均數改變,方差不改變.

3)一個樣本的方差s2=[x32+X—32+ +X32],則這組數據總和等于60.

4)數據的方差為,則數據的方差為.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線與平面相交但不垂直,則下列說法中正確的是( )

A.在平面內沒有直線與直線垂直;

B.在平面內有且只有一條直線與直線垂直;

C.在平面內有無數條直線與直線垂直;

D.在平面內存在兩條相交直線與直線垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于旋轉體的體積,有如下的古爾丁(guldin)定理:平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側,含直線上)旋轉一周所得的旋轉體的體積,等于D的面積與D的幾何中心(也稱為重心)所經過的路程的乘積.利用這一定理,可求得半圓盤,繞直線x旋轉一周所形成的空間圖形的體積為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形,平面,,分別是線段,的中點.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,,其中.

(1)當時,求證:

(2)當與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】201810月考考試中,成都外國語學校共有250名高三文科學生參加考試,數學成績的頻率分布直方圖如圖:

1)如果成績大于130的為特別優(yōu)秀,這250名學生中本次考試數學成績特別優(yōu)秀的大約多少人?

2)如果這次考試語文特別優(yōu)秀的有5人,語文和數學兩科都特別優(yōu)秀的共有2人,從(1)中的數學成績特別優(yōu)秀的人中隨機抽取2人,求選出的2人中恰有1名兩科都特別優(yōu)秀的概率.

3)根據(1),(2)的數據,是否有99%以上的把握認為語文特別優(yōu)秀的同學,數學也特別優(yōu)秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案