(理)直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點,M、N關于直線x+y=0對稱,則不等式組表示的平面區(qū)域的面積為
A.2
B.1
C.1/2
D.1/4
科目:高中數(shù)學 來源:2007年上海市郊區(qū)部分區(qū)縣高三調(diào)研考試數(shù)學卷 題型:044
設橢圓C∶(a>0)的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點.
(1)求a的取值范圍;
(2)(理)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(文)如果橢圓的兩個焦點與短軸的兩個端點恰好是正方形的四個頂點,求橢圓的方程;
(3)(理)對(2)中的橢圓C,直線l∶y=kx+m(k≠0)與C交于不同的兩點M、N,若線段MN的垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.
(文)過(2)中橢圓右焦點F2且不與坐標軸垂直的直線l交橢圓于M、N兩點,線段MN的垂直平分線與x軸交于點Q,求點Q的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2008年高考預測卷數(shù)學(文理合卷)新人教版 題型:044
已知雙曲線(a>0,b>0)的離心率.過點A(0,-b)和B(a,0)的直線與原點間的距離為,直線y=kx+m(k≠0,m≠0)與雙曲線交于不同的兩點C、D,且C、D兩點同在以點A為圓心的一個圓上.
(1)求此雙曲線方程;
(2)求k,m的關系.
(理)(3)求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:陜西省師大附中2009屆高三第二次模擬考試(數(shù)學) 題型:044
(理)已知橢圓C1的方程為+y2=1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)若直線l∶y=kx+與雙曲線C2恒有兩個不同的交點A和B,且>2,其中O為原點,求k的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(06年江西卷理)已知圓M:(x+cosq)2+(y-sinq)2=1,
直線l:y=kx,下面四個命題:
(A)對任意實數(shù)k與q,直線l和圓M相切;
(B)對任意實數(shù)k與q,直線l和圓M有公共點;
(C)對任意實數(shù)q,必存在實數(shù)k,使得直線l與
和圓M相切
(D)對任意實數(shù)k,必存在實數(shù)q,使得直線l與
和圓M相切
其中真命題的代號是______________(寫出所有真命題的代號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com