求證:
3
sin240°
-
1
cos240°
=32sin10°.
考點:三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:把所給的式子通分后利用兩角和的正弦公式、二倍角公式、誘導公式化簡,可得結果.
解答: 證明:
3
sin240°
-
1
cos240°
=
(
3
)2cos240-sin240°
sin240°cos240°
(
3
cos40°-sin40°)(
3
cos40°+sin40°)
sin240°cos240°
=
16sin100°sin20°
sin280°
=
16sin20°
sin80°
=32sin10°.
等式成立.
點評:本題主要考查兩角和的正弦公式、二倍角公式、誘導公式化簡三角函數(shù)式,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

口袋中裝有除顏色,編號不同外,其余完全相同的2個紅球,4個黑球.現(xiàn)從中同時取出3個球.
(Ⅰ)求恰有一個黑球的概率;
(Ⅱ)記取出紅球的個數(shù)為隨機變量X,求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知AB=4,AC=5,BC=7,線段m平分∠BAC,求線段m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AB
=
a
,
AC
=
b
,若
BC
=
DC
,
AE
=2
EC
,則
ED
=
 
.(用
a
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=ex+
1
ex
,其中e是自然對數(shù)的底數(shù).
(Ⅰ)用定義證明函數(shù)f(x)在區(qū)間{0,+∞)上是增函數(shù);
(Ⅱ)設函數(shù)f(x)的最小值是m,求m的值;
(Ⅲ)在(Ⅱ)的條件下,若f(2x2+a2)-f(3x2-3ax+a2+2)<m-2在a∈[-1,1]時恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求滿足下列條件的直線的方程:
(1)經(jīng)過點A(3,2)且與直線4x+y-2=0平行;
(2)經(jīng)過點C(2,-3),且平行于過點M(1,2)和N(-1,-5)的直線;
(3)經(jīng)過點B(3,0),且與直線2x+y-5=0垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=sin2x-x(-
π
2
≤x≤
π
2
)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P點在圓O內(nèi),弦AB的中點是P,圓內(nèi)接正三角形的邊長為a,則|AB|≥a的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
12
13
,α∈(
π
2
,π),cosβ=
3
5
,β∈(-
π
2
,0),求cos(α+β)的值.

查看答案和解析>>

同步練習冊答案