解:
(Ⅰ)由
Sn+1=2
Sn+n+1 ①得
②
①—②得
故
an+1=2
an +1。(n≥2)···············································(2分)
又
an+1+1=2(
an+1),
所以
故數列{
an+1}是從第2項其,以
a2+1為首項,公比為2的等比數列。
又
S2=2
S1+1+1,
a1=
a,所以
a2=
a+2。
故
an=(
a+3)·2
n-2-1(n≥2).
又
a1=
a不滿足
an=(
a+3)·2
n-2-1,
所以
····································6分
(Ⅱ)由
a1=1,得
an==2
n-1,
n∈N*,則
又
①
得
②
①—②得
故
所以
································12分