4.m,n,l表示三條不同的直線,α,β,γ表示三個不同的平面,下列命題中
①若m,n與l都垂直,則m∥n;
②若m∥α,m∥n,則n∥α;
③若m⊥α,n∥β且α∥β,則m⊥n;
④若γ⊥α,γ⊥β,則α∥β
其中正確的命題是③.(寫出所有正確命題的序號)

分析 由m,n,l表示不同直線,α,β,γ表示三個不同平面,知:①若m,n與l都垂直,則m與n平行,相交或異面,從而進(jìn)行判斷;②若m∥α,m∥n,則n∥α或n?α,從而進(jìn)行判斷;③若m⊥α,n∥β且α∥β,則m⊥n成立,從而進(jìn)行判斷;④列舉反例即可.

解答 解:m,n,l表示不同直線,α,β,γ表示三個不同平面,
對于①,∵若m⊥l,n⊥l,則m與n平行,相交或異面,故①錯誤;
對于②,若m∥α,m∥n,則n∥α或n?α,故②不正確;
對于③,由于n∥β且α∥β可得出n?α或n∥α,又m⊥α可得出m⊥n,故若m⊥α,n∥β且α∥β,則m⊥n,故③正確;
④α⊥γ,β⊥γ,如圖:

顯然此時(shí)α與β相交,故④錯誤. 
故答案為:③.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,著重考查空間中直線與平面之間的位置關(guān)系及平面與平面之間的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖是拋物線型拱橋,當(dāng)水面在l時(shí),拱頂離水面2m,水面寬4m.
(1)按圖中的建系方案,求拋物線的標(biāo)準(zhǔn)方程;
(2)當(dāng)水面下降1m后,水面寬多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線 C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸端點(diǎn)到一條漸近線的距離為$\frac{2}$,則雙曲線C的離心率為( 。
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離等于$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對邊,a=$\sqrt{5}$,f(${\frac{C}{2}$+$\frac{π}{6}}$)=$\frac{{2\sqrt{5}}}{3}$,△ABC的面積為$2\sqrt{5}$,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=logax在定義域內(nèi)單調(diào)遞增,則函數(shù)g(x)=loga(3-2x-x2)的單調(diào)遞增區(qū)間為(-3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果正實(shí)數(shù)x,y滿足xy+2x+y=4,則3x+2y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列有關(guān)命題的敘述錯誤的是( 。
A.對于命題p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x+1≥0
B.若p∧q為假命題,則p,q均為假命題
C.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
D.“x>2”是“x2-3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,已知2$\sqrt{3}$absinC=a2+b2-c2,則C的度數(shù)為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過點(diǎn)P(2,-1)的直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù))與曲線C交于M、N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)求|PM|2+|PN|2的值.

查看答案和解析>>

同步練習(xí)冊答案