13.在△ABC中,已知2$\sqrt{3}$absinC=a2+b2-c2,則C的度數(shù)為( 。
A.30°B.60°C.120°D.150°

分析 利用余弦定理表示出cosC,整理后代入已知等式求出tanC的值,即可確定出C的度數(shù).

解答 解:∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴a2+b2-c2=2abcosC,
代入已知等式得:2$\sqrt{3}$absinC=2abcosC,即$\sqrt{3}$sinC=cosC,
∴tanC=$\frac{\sqrt{3}}{3}$,C∈(0,180°),
則∠C=30°.
故選:A.

點評 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={0,1,2},A∩B={0,1},A∪B={0,1,2,3},則B=(  )
A.{3}B.{0,1}C.{1,2,3}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.m,n,l表示三條不同的直線,α,β,γ表示三個不同的平面,下列命題中
①若m,n與l都垂直,則m∥n;
②若m∥α,m∥n,則n∥α;
③若m⊥α,n∥β且α∥β,則m⊥n;
④若γ⊥α,γ⊥β,則α∥β
其中正確的命題是③.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=f(x+1)的定義域是[-4,6],則f(x+2)的定義域是(  )
A.[0,$\frac{5}{2}$]B.[-1,4]C.[-5,5]D.[-3,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)Z=3+4i對應(yīng)的向量$\overrightarrow{OZ}$的坐標(biāo)是(  )
A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.
(1)請估算參加這次知識競賽的高一年級學(xué)生成績的眾數(shù)和高二年級學(xué)生成績的平均值;
(2)完成下面2×2列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?
成績小于60分人數(shù)成績不小于60分人數(shù)合計
高一
高二
合計
附:臨界值表及參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=n2+n,
(Ⅰ)求{an}的通項公式
(Ⅱ)已知bn=$\frac{1}{{{a_n}^2-1}}$,數(shù)列{bn}的前n項和為Tn,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t為參數(shù)),圓C的方程是x2+y2-2x-4y=0,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線l與圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C的兩個交點為M,N,求M,N兩點的極坐標(biāo)(ρ≥0,0≤θ<2π),以及△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)滿足f(-2)=1,其中a為實常數(shù).
(1)求a的值,并判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案