【題目】如圖(1)所示,五邊形中,,,分別是線段的中點(diǎn),且,現(xiàn)沿翻折,使得,得到的圖形如圖(2)所示.
圖(1) 圖(2)
(1)證明:平面;
(2)若平面與平面所成角的平面角的余弦值為,求的值.
【答案】(1)見(jiàn)解析(2)
【解析】
試題(1)根據(jù)二面角定義得是二面角的平面角,即得平面平面.由等腰三角形性質(zhì)得,根據(jù)面面垂直性質(zhì)定理得平面,即得.根據(jù)勾股定理得,最后根據(jù)線面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解得平面一個(gè)法向量,根據(jù)向量數(shù)量積求夾角,最后根據(jù)線面角與向量夾角互余關(guān)系列方程,解得的值.
試題解析:(1)如圖,連接.因?yàn)?/span>,且是二面角的平面角,故平面平面.
因?yàn)?/span>,為線段的中點(diǎn),故,
因?yàn)槠矫?/span>平面,平面,故平面,
因?yàn)?/span>平面,故.
,故,
即,因?yàn)?/span>,所以平面.
(2)因?yàn)?/span>,所以,由(I)知,平面,所以兩兩垂直,
如圖,建立空間直角坐標(biāo)系,設(shè),則,,,
則,.設(shè)平面的法向量為,
由得令可得,故;
又為平面的一個(gè)法向量,平面與平面所成角的平面角的余弦值為,
所以,解得(負(fù)值舍去),故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點(diǎn).
(1)證明:平面平面;
(2)如何在上找一點(diǎn),使平面并說(shuō)明理由;
(3)若,對(duì)于(2)中的點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn).新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于毫克/百毫升,小于毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于毫克/百毫升為醉酒駕車.經(jīng)過(guò)反復(fù)試驗(yàn),喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下圖,該函數(shù)近似模型如下:.
又已知?jiǎng)偤眠^(guò)1小時(shí)時(shí)測(cè)得酒精含量值為毫克/百毫升.根據(jù)上述條件,解答以下問(wèn)題:
(1)試計(jì)算喝1瓶啤酒多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整分鐘計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,即,該數(shù)列后項(xiàng)中的最小項(xiàng)為,記,;
(1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)若是數(shù)列的前項(xiàng)和,且對(duì)任意,有,其中為實(shí)數(shù),且,.
(。┰O(shè),證明:數(shù)列是等比數(shù)列;
(ⅱ)若數(shù)列對(duì)應(yīng)的滿足對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的,均為有理數(shù)),為一無(wú)理數(shù)列(即對(duì)任意的,為無(wú)理數(shù)).
(1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式.
(2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為.
(3)已知,,對(duì)任意的,恒成立,試計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為、.
(1)求以為焦點(diǎn),原點(diǎn)為頂點(diǎn)的拋物線方程;
(2)若橢圓上點(diǎn)滿足,求的縱坐標(biāo);
(3)設(shè),若橢圓上存在兩個(gè)不同點(diǎn)、滿足,證明:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)一個(gè)周期內(nèi)的圖象,將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,再把所得圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.
(1)求函數(shù)和的解析式;
(2)若,求的所有可能的值;
(3)求函數(shù)(為正常數(shù))在區(qū)間內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為提高生產(chǎn)質(zhì)量,引入了一批新的生產(chǎn)設(shè)備,為了解生產(chǎn)情況,隨機(jī)抽取了新、舊設(shè)備生產(chǎn)的共200件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),統(tǒng)計(jì)得到產(chǎn)品的質(zhì)量指標(biāo)值如下表及圖(所有產(chǎn)品質(zhì)量指標(biāo)值均位于區(qū)間內(nèi)),若質(zhì)量指標(biāo)值大于30,則說(shuō)明該產(chǎn)品質(zhì)量高,否則說(shuō)明該產(chǎn)品質(zhì)量一般.
質(zhì)量指標(biāo) | 頻數(shù) |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合計(jì) | 80 |
(1)根據(jù)上述圖表完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為產(chǎn)品質(zhì)量高與引人新設(shè)備有關(guān);
新舊設(shè)備產(chǎn)品質(zhì)量列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
新設(shè)備產(chǎn)品 | |||
舊設(shè)備產(chǎn)品 | |||
合計(jì) |
(2)從舊設(shè)備生產(chǎn)的質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品中,按分層抽樣抽取6件產(chǎn)品,再?gòu)倪@6件產(chǎn)品中隨機(jī)選取2件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),求至少有一件產(chǎn)品質(zhì)量指標(biāo)值位于的概率.
附:,.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點(diǎn),,為橢圓上的動(dòng)點(diǎn),,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com