10.給出如下四個(gè)命題:
①命題“關(guān)于x的不等式$\frac{1-x}{1+x}$≥0的解集為{x|x<-1或x≥1}”為真命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④“m<$\frac{1}{4}$”是“方程x2+x+m=0有實(shí)數(shù)解”的必要不充分條件.
其中假命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

分析 ①根據(jù)分式不等式的解法進(jìn)行求解判斷,
②根據(jù)否命題的定義進(jìn)行判斷,
③根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷,
④根據(jù)一元二次方程與判別式△的關(guān)系結(jié)合充分條件和必要條件的定義進(jìn)行判斷.

解答 解:①命題“關(guān)于x的不等式$\frac{1-x}{1+x}$≥0的解集為{x|-1<x≤1}”,故①錯(cuò)誤;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;故②正確,
③命題“?x∈R,x2+1≥1”的否定是““?x∈R,x2+1<1”;故③錯(cuò)誤,
④若方程x2+x+m=0有實(shí)數(shù)解,則判別式△=1-4m≥0,則m≤$\frac{1}{4}$,
即“m<$\frac{1}{4}$”是“方程x2+x+m=0有實(shí)數(shù)解”的充分不必要條件,故④錯(cuò)誤,
故①③④錯(cuò)誤;
故選:B

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=|x-m|+2m.
(1)若不等式f(x)≤2的解集為單元素集,求實(shí)數(shù)m的值;
(2)在(1)的條件下,若存在x0∈R,使得f(x0)+f(-x0)≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}為等差數(shù)列,公差為d,若$\frac{{a}_{11}}{{a}_{10}}$<-1,且它的前n項(xiàng)和Sn有最大值,則使Sn<0的n的最小值為19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x={cos^2}θ\\ y={sin^2}θ\end{array}\right.$(θ為參數(shù)),曲線D的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=-$\sqrt{2}$.
(1)將曲線C,D的參數(shù)方程化為普通方程;
(2)判斷曲線C與曲線D的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過原點(diǎn)的直線與橢圓交于A、B兩點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),且滿足AF⊥BF,設(shè)∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{6}$],則橢圓離心率e的取值范圍為( 。
A.[$\sqrt{3}$-1,$\frac{2}{3}$]B.[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$]C.[2-$\sqrt{3}$,$\frac{2}{3}$]D.[2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)p為非負(fù)實(shí)數(shù),隨機(jī)變量ξ的分布列為:
ξ012
P$\frac{1}{2}$-pp$\frac{1}{2}$
則D(ξ)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知tanx=2,則$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值是(  )
A.$\frac{1}{15}$B.$\frac{2}{15}$C.$-\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側(cè)面APD為等腰直角三角形,PA⊥PD,平面PAD⊥平面ABCD.
(Ⅰ)求證:PA⊥面PCD;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={0,1,2},A∩B={0,1},A∪B={0,1,2,3},則集合B的子集的個(gè)數(shù)為(  )
A.2B.3C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案