6.已知拋物線y=ax2+2x-a-1(a∈R),恒過第三象限上一定點A,且點A在直線3mx+ny+1=0(m>0,n>0)上,則$\frac{1}{m}+\frac{1}{n}$的最小值為( 。
A.4B.12C.24D.36

分析 拋物線y=ax2+2x-a-1(a∈R),恒過第三象限上一定點A,得到A(-1,-3),再把點A代入直線方程得到m+n=$\frac{1}{3}$,再把“1”整體代入所求的式子,利用基本不等式求出最小值.

解答 解:拋物線y=ax2+2x-a-1(a∈R),恒過第三象限上一定點A,
∴A(-1,-3),
∴$m+n=\frac{1}{3}$,
又$\frac{1}{m}+\frac{1}{n}$=$\frac{3(m+n)}{m}+\frac{3(m+n)}{n}$=$6+3(\frac{n}{m}+\frac{m}{n})$$≥6+6\sqrt{\frac{n}{m}•\frac{m}{n}$=12,當(dāng)且僅當(dāng)m=n時等號成立.
故選:B

點評 本題考查了基本不等式的應(yīng)用,利用拋物線的圖象過定點求出點的坐標(biāo),再由“1”的整體代換湊出積為定值,利用基本不等式進(jìn)行求解,注意“一正、二定、三相等”的驗證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知直三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點.
(Ⅰ)求證:AD⊥平面BC1;
(Ⅱ)求證:A1B∥平面AC1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不共線向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|$,且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為保障春節(jié)期間的食品安全,某市質(zhì)量監(jiān)督局對超市進(jìn)行食品檢查,如圖所示是某品牌食品中微量元素含量數(shù)據(jù)的莖葉圖,已知該組數(shù)據(jù)的平均數(shù)為11.75,則$\frac{4}{a}+\frac{1}$的最小值為(  )
A.9B.$\frac{9}{2}$C.3D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},則A∩B中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在[-1,2]內(nèi)任取一個數(shù)a,則點(1,a)位于x軸下方的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項均為正數(shù)的等比數(shù)列{an}滿足:-a3,a2,a4成等差數(shù)列.
(1)若a1=1,求{an}的前n項和Sn
(2)若bn=log2a2n+1,且數(shù)列{bn}的前n項和Tn=n2+3n,求a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD.
(2)若$cos∠BAD=\frac{1}{5}$,求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)據(jù)-5,3,2,-3,3的平均數(shù),眾數(shù),中位數(shù),方差分別是( 。
A.0,3,3,11.2B.0,3,2,56C.0,3,2,11.2D.0,2,3,56

查看答案和解析>>

同步練習(xí)冊答案