已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ) ;(Ⅱ) .

試題分析:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為:,先由已知條件“短軸長(zhǎng)為”,求得,再由已知條件“有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合”,求得,則,從而得到橢圓方程;(Ⅱ)設(shè)直線方程為:,與橢圓方程聯(lián)立方程組求得(※),假設(shè)存在定點(diǎn)使得始終平分,則有,將對(duì)應(yīng)點(diǎn)的坐標(biāo)代入,結(jié)合直線方程以及(※)化簡(jiǎn)求得,從而無(wú)論如何取值,只要就可保證式子成立,進(jìn)而得出點(diǎn)坐標(biāo).
試題解析:(Ⅰ)∵橢圓的短軸長(zhǎng)為,
,解得,
又拋物線的焦點(diǎn)為,
,則
∴所求橢圓方程為:
(Ⅱ)設(shè),代入橢圓方程整理得:
,假設(shè)存在定點(diǎn)使得始終平分,

①,
要使得①對(duì)于恒成立,則
故存在定點(diǎn)使得始終平分,它的坐標(biāo)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線的焦點(diǎn)在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過(guò)兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且

(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線于點(diǎn),的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長(zhǎng)度之比為1:3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知定點(diǎn)、,動(dòng)點(diǎn)N滿足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(。┰O(shè)直線的斜率分別為,求證:為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)為,,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)的直線與橢圓交于、兩點(diǎn),問(wèn)在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

(1)以為長(zhǎng)軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問(wèn)不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線焦點(diǎn)的弦,過(guò)兩點(diǎn)分別作其準(zhǔn)線的垂線,垂足分別為傾斜角為,若,則
;.②,
, ④ ⑤
其中結(jié)論正確的序號(hào)為                

查看答案和解析>>

同步練習(xí)冊(cè)答案