15.設(shè)0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,則sinα=$\frac{2\sqrt{2}}{3}$.

分析 利用同角三角函數(shù)基本關(guān)系式求解余弦函數(shù),然后利用二倍角公式求解即可.

解答 解:0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,可得cos$\frac{α}{2}$=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$.
sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{\sqrt{3}}{3}×\frac{\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.

點(diǎn)評(píng) 本題考查二倍角公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知l1的斜率是x,l2過點(diǎn)A(-1,-3),B(3,5),且l1∥l2,則log${\;}_{\frac{1}{8}}$x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,則f(f(-2))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k•3x)+f(3x-9x-4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\overrightarrow a$=(x-1,y),$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,則當(dāng)x>0,y>0時(shí),$\frac{1}{x}$+$\frac{1}{y}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時(shí),f(x)=2x,則下列不等式中正確的是(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若命題p:?x∈Z,ex<1,則?p為(  )
A.?x∈Z,ex<1B.?x∉Z,ex<1C.?x∈Z,ex≥1D.?x∉Z,ex≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosα=-$\frac{3}{5}$,求$\frac{cos(α-\frac{7π}{2})+2sin(3π-α)}{csc(3π+α)+sec(\frac{5π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a2=9,a4=81.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=log3an,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案