A. | f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$) | B. | f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$) | C. | f(sin1)<f(cos1) | D. | f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$) |
分析 確定偶函數(shù)f(x)在(-1,0)上是增函數(shù),f(x)在(0,1)上是減函數(shù),即可得出結論.
解答 解:x∈[3,4]時,f(x)=2x,故偶函數(shù)f(x)在[3,4]上是增函數(shù),
又定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),故函數(shù)的周期是2
所以偶函數(shù)f(x)在(-1,0)上是增函數(shù),
所以f(x)在(0,1)上是減函數(shù),
對于A,sin$\frac{1}{2}$<cos$\frac{1}{2}$,∴f(sin$\frac{1}{2}$)>f(cos$\frac{1}{2}$),
對于B,sin$\frac{π}{3}$>cos$\frac{π}{3}$,∴f(sin$\frac{π}{3}$)<f(cos$\frac{π}{3}$);
對于C,sin1>cos1,∴,f(sin1)<f(cos1);
對于D,-cos$\frac{3}{2}$>sin$\frac{3}{2}$,∴f(-cos$\frac{3}{2}$)>f(sin$\frac{3}{2}$),∴f(cos$\frac{3}{2}$)>f(sin$\frac{3}{2}$),
故選:C.
點評 本題考查函數(shù)的周期性與函數(shù)的單調(diào)性比較大小,構思新穎,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
?x+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{5π}{12}$ | $\frac{11π}{12}$ | |||
Asin(?x+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{6}$ | B. | $\frac{{\sqrt{3}}}{12}$ | C. | $\frac{{\sqrt{6}}}{6}$ | D. | $\frac{{\sqrt{6}}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (a,+∞) | |
B. | (-∞,a) | |
C. | 當a>1時,解集是(a,+∞);當0<a<1時,解集是(-∞,a) | |
D. | 當a>1時,解集是(-∞,a);當0<a<1時,解集是(a,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com