直線y=kx+b與曲線交于A、B兩點,記△AOB的面積為S(O是坐標原點).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當|AB|=2,S=1時,求直線AB的方程.
(1)離心率.(2)當時, S取到最大值1.
(3)或或或.
解析試題分析:(1)轉化成標準方程,明確曲線為橢圓,,進一步得到橢圓的離心率.
(2)設點A的坐標為,點B的坐標為,由,解得,
將面積用b表示.
(3)由,應用弦長公式,得到|AB|=,
根據(jù)O到AB的距離得到代入上式并整理,解得k,b.
試題解析: (1)曲線的方程可化為:,
∴此曲線為橢圓,,
∴此橢圓的離心率. 4分
(2)設點A的坐標為,點B的坐標為,
由,解得, 6分
所以
當且僅當時, S取到最大值1. 8分
(3)由得,
①
|AB|= ②
又因為O到AB的距離,所以 ③
③代入②并整理,得
解得,,代入①式檢驗,△>0 ,
故直線AB的方程是
或或或. 14分
考點:橢圓的幾何性質,直線與橢圓的位置關系,點到直線的距離公式,函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,分別是橢圓的左、右焦點,頂點的坐標為,連結并延長交橢圓于點A,過點A作軸的垂線交橢圓于另一點C,連結.
(1)若點C的坐標為,且,求橢圓的方程;
(2)若求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為.
(1)若原點到直線的距離為,求橢圓的方程;
(2)設過橢圓的右焦點且傾斜角為的直線和橢圓交于A,B兩點.
當,求b的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線與橢圓C相交TA,B兩點,設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)t取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設直線l:與橢圓W:有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求的最大值及取得最大值時m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知⊙O′過定點A(0,p)(p>0),圓心O′在拋物線C:x2=2py(p>0)上運動,MN為圓O′在x軸上所截得的弦.
(1)當O′點運動時,|MN|是否有變化?并證明你的結論;
(2)當|OA|是|OM|與|ON|的等差中項時,試判斷拋物線C的準線與圓O′的位置關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點(為坐標原點).
(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com