【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個單位后,得到的圖象關于y軸對稱則函數(shù)的圖象( )

A. 關于直線對稱 B. 關于直線對稱

C. 關于點對稱 D. 關于點對稱

【答案】D

【解析】

由函數(shù)y=f(x)的圖象與性質求出T、ωφ,寫出函數(shù)y=f(x)的解析式,再求f(x)的對稱軸和對稱中心.

由函數(shù)y=f(x)圖象相鄰兩條對稱軸之間的距離為,可知其周期為4π,

所以ω==,所以f(x)=sin(x+φ);

將函數(shù)y=f(x)的圖象向左平移個單位后,得到函數(shù)y=sin[(x+)+φ]圖象.

因為得到的圖象關于y軸對稱,所以×+φ=kπ+,k∈Z,即φ=kπ+,k∈Z;

又|φ|<,所以φ=,所以f(x)=sin(x+),

x+=kπ,k∈Z,解得x=2k,k∈Z;

k=0時,得f(x)的圖象關于點(-,0)對稱

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】6個人站成前后二排,每排3人,若甲、乙兩人左右、前后均不相鄰,則不同的站法種數(shù)為

A. 384 B. 480 C. 768 D. 240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域在R的單調增函數(shù)滿足恒等式x,),且.

(1)求,

(2)判斷函數(shù)的奇偶性,并證明;

(3)若對于任意,都有成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側面底面,且,設,分別為,,的中點.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設二次函數(shù)的圖像過點,且對于任意實數(shù),不等式恒成立

(1)求的表達式;

(2)設,若上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某樂園按時段收費,收費標準為:每玩一次不超過小時收費10元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人參與但都不超過小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。

(1) 表示甲乙玩都不超過小時的付費情況,求甲、乙二人付費之和為44元的概率;

(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示中獎,則該顧客中獎;若電腦顯示謝謝,則不中獎,求顧客中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列的前n項和,滿足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=2,BC=CC1,P是BC1上一動點,則A1P+PC的最小值為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的右焦點為,左、右頂點分別為、,上、下頂點分別為,連結并延長交橢圓于點,連結,,記橢圓的離心率為.

1)若,.

①求橢圓的標準方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

同步練習冊答案