在△ABC中,a=1,c=2,B=60°,則b=
 
考點(diǎn):余弦定理
專題:計(jì)算題,解三角形
分析:由余弦定理可得結(jié)論.
解答: 解:∵△ABC中,a=1,c=2,B=60°,
∴由余弦定理可得b=
1+4-2×1×2×
1
2
=
3

故答案為:
3
點(diǎn)評:本題考查余弦定理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=x+t上的點(diǎn)P,從P引⊙○:x2+y2=2的一條切線(切點(diǎn)為Q),對于某一t的值,當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí),總存在定點(diǎn)M使得PM=PQ,則這樣的t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[20,80]內(nèi)任取一個(gè)實(shí)數(shù)m,則實(shí)數(shù)m落在區(qū)間[50,75]的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知a∈(0,
π
2
),cos(a+
π
3
)=-
21
7
,則cos2a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐系xOy中,已知直線y=
3
被圓C1:x2+y2+8x+F=0截得弦長為2.
(1)求圓C1的方程;
(2)設(shè)P是y軸上的動(dòng)點(diǎn),PA,PB分別切圓C1于A,B兩點(diǎn),求動(dòng)弦AB中點(diǎn)的軌跡方程;
(3)設(shè)圓C1和x軸相交于C,D兩點(diǎn),點(diǎn)Q為圓C1上不同于C,D的任意一點(diǎn),直線QC,QD交y軸于M,N兩點(diǎn),當(dāng)點(diǎn)Q變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(m,cos2x),
b
=(sin2x,n),設(shè)函數(shù)f(x)=
a
b
,且y=f(x)的圖象過點(diǎn)f(
3
)=msin
3
+ncos
3
=-2和點(diǎn)(
3
,-2).
(Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
,則
x+y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)a=0.72,b=ln0.7,c=20.7按從小到大排列是
 
(用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2-4x+5
的值域?yàn)?div id="mm32vs1" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案