1.某房屋開發(fā)公司根據(jù)市場調(diào)查,計(jì)劃在2017年開發(fā)的樓盤中設(shè)計(jì)“特大套”、“大套”、“經(jīng)濟(jì)適用房”三類商品房,每類房型中均有舒適和標(biāo)準(zhǔn)兩種型號.某年產(chǎn)量如表:
房型特大套大套經(jīng)濟(jì)適用房
舒適100150x
標(biāo)準(zhǔn)300y600
若按分層抽樣的方法在這一年生產(chǎn)的套房中抽取50套進(jìn)行檢測,則必須抽取“特大套”套房10套,“大套”15套.
(1)求x,y的值;
(2)在年終促銷活動中,獎給了某優(yōu)秀銷售公司2套舒適型和3套標(biāo)準(zhǔn)型“經(jīng)濟(jì)適用型”套房,該銷售公司又從中隨機(jī)抽取了2套作為獎品回饋消費(fèi)者.求至少有一套是舒適型套房的概率;
(3)今從“大套”類套房中抽取6套,進(jìn)行各項(xiàng)指標(biāo)綜合評價(jià),并打分如下:9.0    9.2    9.5    8.8    9.6    9.7
現(xiàn)從上面6個(gè)分值中隨機(jī)的一個(gè)一個(gè)地不放回抽取,規(guī)定抽到數(shù)9.6或9.7,抽取工作即停止.記在抽取到數(shù)9.6或9.7所進(jìn)行抽取的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

分析 (1)由分層抽樣原理列出方程求出y、x的值;
(2)設(shè)至少有一套舒適型套房記為事件A,
求出事件A發(fā)生的個(gè)數(shù)與基本事件的總和,計(jì)算所求的概率;
(3)根據(jù)題意得ξ可能的取值,計(jì)算對應(yīng)的概率,
寫出ξ的分布列,求出數(shù)學(xué)期望值.

解答 解:(1)由題設(shè)知$\frac{10}{400}$=$\frac{15}{y+150}$=$\frac{25}{x+600}$,
解得y=450,x=400;
(2)設(shè)至少有一套舒適型套房記為事件A,事件A發(fā)生的個(gè)數(shù)為:
$C_2^1C_3^1+C_2^2=7$,
基本事件的總和為$C_5^2$,
故所求的概率為$P(A)=\frac{7}{10}$;
(3)根據(jù)題意,ξ可能的取值為1,2,3,4,5,
則$P(ξ=1)=\frac{C_2^1}{C_6^1}=\frac{1}{3}$,
$P(ξ=2)=\frac{C_4^1C_2^1}{C_6^1C_5^1}=\frac{4}{15}$,
$P(ξ=3)=\frac{C_4^1C_3^1C_2^1}{C_6^1C_5^1C_4^1}=\frac{1}{5}$,
$P(ξ=4)=\frac{C_4^1C_3^1C_2^1C_2^1}{C_6^1C_5^1C_4^1C_3^1}=\frac{2}{15}$,
$P({ξ=5})=\frac{1}{15}$;
所以ξ的分布列為:

ξ12345
P$\frac{1}{3}$$\frac{4}{15}$$\frac{1}{5}$$\frac{2}{15}$$\frac{1}{15}$
數(shù)學(xué)期望為E(ξ)=1×$\frac{1}{3}$+2×$\frac{4}{15}$+3×$\frac{1}{5}$+4×$\frac{2}{15}$+5×$\frac{1}{15}$=$\frac{7}{3}$.

點(diǎn)評 本題考查了離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.${∫}_{-1}^{1}$|x|dx等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用反證法證明命題:“若a,b∈R,且a2+|b|=0,則a,b全為0”時(shí),應(yīng)假設(shè)為a,b中至少有一個(gè)不為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\frac{x+1}{x^2},g(x)={log_2}x+m$,若對?x1∈[1,2],?x2[1,4],使得f(x1)≥g(x2),則m的取值范圍是(-∞,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.節(jié)能減排以來,蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=x2-xlnx+2,若存在區(qū)間$[{a,b}]⊆[{\frac{1}{2},+∞})$,使f(x)在[a,b]上的值域?yàn)閇k(a+2),k(b+2)],則k的取值范圍為(1,$\frac{9+2ln2}{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.考察黃煙經(jīng)過培養(yǎng)液處理與是否跟發(fā)生青花病的關(guān)系.調(diào)查了1633株黃煙,得到如表中數(shù)據(jù),請根據(jù)數(shù)據(jù)作統(tǒng)計(jì)分析:
培養(yǎng)液處理未處理合計(jì)
青花病30224254
無青花病2413551379
合計(jì)5415791633
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.010.0050.001
k3.8416.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=log2x的定義域?yàn)槭茿={1,2,4},值域?yàn)锽,則A∩B=(  )
A.{1}B.{2}C.{1,2}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.展開式${({{x^2}-\frac{2}{x^3}})^5}$中的常數(shù)項(xiàng)為40.

查看答案和解析>>

同步練習(xí)冊答案