1.P(x,y)是曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是參數(shù))上的動(dòng)點(diǎn),則$\frac{y}{x}$的取值范圍是( 。
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[0,$\frac{\sqrt{3}}{3}$]D.(-∞,$\frac{\sqrt{3}}{3}$]

分析 曲線的參數(shù)方程消去參數(shù),將曲線C先化為普通方程,然后再結(jié)合圖形計(jì)算,由此能求出$\frac{y}{x}$的取值范圍.

解答 解:∵曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是參數(shù)),
∴曲線C的普通方程為(x+2)2+y2=1(y≥0),
∴曲線C是以點(diǎn)C(-2,0)為圓心半徑為1的上半圓,
設(shè)點(diǎn)P(x,y)為曲線C上一動(dòng)點(diǎn),
則 $\frac{y}{x}$=kOP,(6分)
當(dāng)P的坐標(biāo)為(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$)時(shí),$\frac{y}{x}$有最小值為-$\frac{\sqrt{3}}{3}$,
當(dāng)P的坐標(biāo)為(-1,0)時(shí),$\frac{y}{x}$有最大值為0,
∴$\frac{y}{x}$的取值范圍是[-$\frac{\sqrt{3}}{3}$,0].
故選:A.

點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若拋物線x2=12y上一點(diǎn)(x0,y0)到焦點(diǎn)的距離是該點(diǎn)到x軸距離的4倍,則y0的值為(  )
A.1B.$\sqrt{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為非零向量,若|($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$|=|($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$|,則( 。
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$∥$\overrightarrow{c}$或$\overrightarrow$∥$\overrightarrow{c}$D.$\overrightarrow{a}$⊥$\overrightarrow{c}$或$\overrightarrow$⊥$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,輸出S的值等于( 。
A.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-21$B.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-22$
C.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-22$D.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-21$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,某幾何體的三視圖都是直角三角形,若幾何體的最大棱長(zhǎng)為2,則該幾何體的外接球的體積是( 。
A.$\sqrt{6}π$B.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖中流程圖的運(yùn)行結(jié)果是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,若程序框圖運(yùn)行后輸出的結(jié)果是57,則判斷框中應(yīng)填入的條件是( 。
A.A<4B.A<5C.A≤5D.A≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)三棱柱被一個(gè)平面截去一部分后,剩余部分的三視圖如圖所示,則該幾何體的體積為( 。
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“a<1,b=-4”是“圓x2+y2-2x+6y+5a=0關(guān)于直線y=x+b對(duì)稱”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案