【題目】已知函數(shù)f(x)= ax3﹣bex(a∈R,b∈R),且f(x)在x=0處的切線與x﹣y+3=0垂直.
(1)若函數(shù)f(x)在[ ,1]存在單調(diào)遞增區(qū)間,求實(shí)數(shù)a的取值范圍;
(2)若f′(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求a的取值范圍;
(3)在第二問(wèn)的前提下,證明:﹣ <f′(x1)<﹣1.
【答案】
(1)解:因?yàn)閒'(x)=ax2﹣bex,所以f'(0)=﹣b=﹣1,所以b=1
由前可知,f'(x)=ax2﹣ex
根據(jù)題意:f'(x)>0在 上有解,即ax2﹣ex>0在 上有解
即 在 上有解,令 ,故只需
所以 ,所以,當(dāng) 時(shí),g'(x)<0,所以g(x)在 上單調(diào)遞減,
所以g(x)min=g(1)=e,所以 a>e
(2)解:令h(x)=f'(x),則h(x)=ax2﹣ex,所以h'(x)=2ax﹣ex
由題可知,h'(x)=0有兩個(gè)根x1,x2,即2ax﹣ex=0有兩個(gè)根x1,x2,
又x=0顯然不是該方程的根,所以方程 有兩個(gè)根,
設(shè)φ(x)= ,則φ′(x)= ,當(dāng)x<0時(shí),φ'(x)<0,φ(x)單調(diào)遞減;
當(dāng)0<x<1時(shí),φ′(x)<0,φ(x)單調(diào)遞減;當(dāng)x>1時(shí),φ′(x)>0,φ(x)單調(diào)遞增.
故要使方程2a= 有兩個(gè)根,只需2a>φ(1)=e,即a> ,
所以a的取值范圍是( ,+∞)
(3)解:由(2)得:0<x1<1<x2
且由h'(x1)=0,得2ax1﹣ =0,所以a= ,x1∈(0,1)
所以f′(x1)=h(x1)=a ﹣ = ( ﹣1),x1∈(0,1),
令r(t)=et( ﹣1),(0<t<1),則r′(t)=et( )<0,
r(t)在(0,1)上單調(diào)遞減,
所以r(1)<r(t)<r(0),即﹣ <f′(x1)<﹣1.
【解析】(1)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為 在 上有解,令 ,故只需 ,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(2)令h(x)=f'(x),則h(x)=ax2﹣ex , 問(wèn)題轉(zhuǎn)化為方程 有兩個(gè)根,設(shè)φ(x)= ,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(3)求出f′(x1)= ( ﹣1),x1∈(0,1),令r(t)=et( ﹣1),(0<t<1),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2|x+2|﹣|x+1|,無(wú)窮數(shù)列{an}的首項(xiàng)a1=a.
(1)如果an=f(n)(n∈N*),寫出數(shù)列{an}的通項(xiàng)公式;
(2)如果an=f(an﹣1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項(xiàng)a的取值范圍;
(3)如果an=f(an﹣1)(n∈N*且n≥2),求出數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sinxcos2x,則下列結(jié)論中錯(cuò)誤的為( )
A.點(diǎn)(π,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心
B.直線x= 是函數(shù)y=f(x)圖象的一條對(duì)稱軸
C.π是函數(shù)y=f(x)的周期
D.函數(shù)y=f(x)的最大值為1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾年來(lái),網(wǎng)上購(gòu)物風(fēng)靡,快遞業(yè)迅猛發(fā)展,某市的快遞業(yè)務(wù)主要由兩家快遞公司承接,即圓通公司與申通公司:“快遞員”的工資是“底薪+送件提成”:這兩家公司對(duì)“快遞員”的日工資方案為:圓通公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;申通公司規(guī)定快遞員每天底薪為120元,每日前83件沒(méi)有提成,超過(guò)83件部分每件提成10元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司各隨機(jī)抽取一名快遞員并記錄其100天的送件數(shù),得到如下條形圖:
(1)求申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;
(2)若將頻率視為概率,回答下列問(wèn)題: ①記圓通公司的“快遞員”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)過(guò)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=﹣1對(duì)稱,且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,若方程f(x)=kx有且僅有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)= sinxcosx+sin2x的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再沿x軸向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,則y=g(x)的一個(gè)遞增區(qū)間是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx﹣x(a≠0),g(x)=x2 . (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的a∈(1,+∞),總存在x1 , x2∈[1,a],使得f(x1)﹣f(x2)>g(x1)﹣g(x2)+m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)m>0,n>0且m+n=1,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com