A. | 1 | B. | 2 | C. | 3 | D. | 5 |
分析 把點(diǎn)A(1,2)代入拋物線Γ:y2=2px上,可得p=2.即可得到拋物線Γ的方程為:y2=4x.設(shè)B($\frac{{y}_{1}^{2}}{4}$,y1),C($\frac{{y}_{2}^{2}}{4}$,y2),分別求得k1,k2,k3,代入即可求得$\frac{1}{k_1}-\frac{1}{k_2}+\frac{1}{k_3}$的值.
解答 解:(1)∵點(diǎn)A(1,2)在拋物線Γ:y2=2px上,∴22=2p×1,解得p=2.
∴拋物線Γ的方程為:y2=4x.
設(shè)B($\frac{{y}_{1}^{2}}{4}$,y1),C($\frac{{y}_{2}^{2}}{4}$,y2),
k1=$\frac{{y}_{1}-2}{\frac{{y}_{1}^{2}}{4}-1}$=$\frac{4}{{y}_{1}+2}$,k2=$\frac{{y}_{1}-{y}_{2}}{\frac{{y}_{1}^{2}}{4}-\frac{{y}_{2}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{2}}$,k3=$\frac{{y}_{2}-2}{\frac{{y}_{2}^{2}}{4}-1}$=$\frac{4}{{y}_{2}+2}$,
$\frac{1}{k_1}-\frac{1}{k_2}+\frac{1}{k_3}$=$\frac{{y}_{1}+2}{4}$-$\frac{{y}_{1}+{y}_{2}}{4}$+$\frac{{y}_{2}+2}{4}$=1,
故選:A.
點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、斜率計(jì)算公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10與4 | B. | 10與2 | C. | 4與10 | D. | 2與10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y+1)2=4 | B. | (x+2)2+(y-1)2=4 | C. | (x-2)2+(y+1)2=16 | D. | (x+2)2+(y-1)2=16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)陣中第一列的數(shù)全是0當(dāng)且僅當(dāng)A1=∅ | |
B. | 數(shù)陣中第n列的數(shù)全是1當(dāng)且僅當(dāng)An=S | |
C. | 數(shù)陣中第j行的數(shù)字和表明集合Aj含有幾個(gè)元素 | |
D. | 數(shù)陣中所有的n2個(gè)數(shù)字之和不超過n2-n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | cos70° | D. | sin70° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com