分析 由三視圖知該幾何體是一個(gè)三棱錐,由三視圖求出幾何元素的長度、并判斷出位置關(guān)系,由勾股定理求出幾何體的棱長,由面積公式求出各個(gè)面,求出幾何體的表面積.
解答 解:根據(jù)三視圖可知幾何體是一個(gè)三棱錐
底面是一個(gè)等腰直角三角形,兩條直角邊分別是3,
且AC⊥BC,PB⊥平面ABC,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=3$\sqrt{2}$,
PA=$\sqrt{P{B}^{2}+A{B}^{2}}$=3$\sqrt{3}$,PC=$\sqrt{P{B}^{2}+B{C}^{2}}$=3$\sqrt{2}$,
∴PA2=PC2+AC2,即PC⊥AC,
則幾何體的表面積S=$2×\frac{1}{2}×3×3+\frac{1}{2}×3×3\sqrt{2}+\frac{1}{2}×3×3\sqrt{2}$
=9+9$\sqrt{2}$,
故答案為:9+9$\sqrt{2}$.
點(diǎn)評(píng) 本題考查三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 異面但不垂直 | D. | 異面且垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{141}$ | B. | 2$\sqrt{141}$ | C. | 16$\sqrt{6}$ | D. | 4$\sqrt{141}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com