已知命題p:m,n為直線,α為平面,若m∥n,n?α,則m∥α;命題q:若a>b,則ac>bc,則下列命題為真命題的是( 。
A、p或qB、非p或q
C、非p且qD、p且q
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:分別判斷命題p,q的真假即可得到結(jié)論.
解答: 解:若m∥n,n?α,則m∥α或m⊆α,故p為假命題,
當(dāng)c=0時(shí),若a>b,則ac>bc不成立.故q為假命題.
則非p或q為真命題.
故選:B
點(diǎn)評(píng):本題主要考查復(fù)合命題真假的判斷,根據(jù)復(fù)合命題真假關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4
3
sinxcosx-5sin2x-cos2x+3.
(Ⅰ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的值域;
(Ⅱ)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足
b
a
=
3
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1=an2+an,用[x]表示不超過x的最大整數(shù),則[
1
a1+1
+
1
a2+1
+…+
1
a2014+1
]
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一種新型的超高濃縮洗衣塊,將衣物與洗衣塊一起在足量的水中先浸泡10分鐘再洗滌,去污效果最佳,已知每投放k(1≤k≤5且k∈N)塊洗衣塊在定量為M 靜水中,洗衣塊在水中漸漸溶解后,洗衣水的濃度y(克/升)隨著時(shí)間x (分鐘)變化的函數(shù)有關(guān)系式可近似為y=k•f(x),其中f(x)=
16
8-x
-2(0≤x≤4)
1
2
x(4<x≤10)
,約定:1.若在定量為M的靜水中多次投放該洗衣塊,洗衣塊的溶解速度與洗衣水的濃度的大小無關(guān);2洗衣塊對(duì)洗衣水體積的影響忽略不計(jì).
(1)若在定量為M的靜水中投放3塊洗衣塊,試求2分鐘時(shí)洗衣水的濃度;
(2)若在定量為M的靜水中間隔3分鐘分兩次投放洗衣塊,已知在第二次投放后3分鐘時(shí)洗衣水的濃度為12(克/升),問這兩次共投放了幾塊洗衣塊?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α的一個(gè)法向量
a
=(x,2y-1,-
1
4
),又
b
=(-1,2,1),
c
=(3,
1
2
,-2)且
b
c
在α內(nèi),則
a
=( 。
A、(-
9
52
,-
53
26
,-
1
4
B、(-
9
52
,-
27
52
,-
1
4
C、(-
9
52
,
1
26
,-
1
4
D、(-
27
52
,-
53
26
,-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD中,向量
AB
=
a
,
AC
=
b
AD
=
c
,若M為BC的中點(diǎn),G為△BCD的重心,試用
a
,
b
c
表示向量
AG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(1,-7,8),
OB
=(0,14,16),
c
=(
2
,
1
7
sinα,
1
8
cosα),α∈(0,π),若
c
⊥平面OAB,則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x=0與圓x2+y2-2x-6y-6=0的位置關(guān)系是(  )
A、相交B、相離C、外切D、內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l被兩直線l1:2x+y-8=0和l2:x-3y+10=0截得線段中點(diǎn)是M(0,1),求l方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案