中,。若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率          
結(jié)合余弦定理求,即
,解得,然后結(jié)合橢圓的定義和焦距求離心率。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點為曲線C上一點,求證:直線與曲線C有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓E:(其中),直 線L與橢圓只有一個公共點T;兩條平行于y軸的直線分別過橢圓的左、右焦點F1、F2,且直線L分別相交于A、B兩點.

(Ⅰ)若直線L在軸上的截距為,求證:直線L斜率的絕對值與橢圓E的離心率相等;(Ⅱ)若的最大值為1200,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知圓,定點A(3,0),M為圓C上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)求過點Q(2,1)的弦的中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,中心在原點O的橢圓的右焦點為F(3,0),
右準(zhǔn)線l的方程為:x = 12。
(1)求橢圓的方程;(4分)
(2)在橢圓上任取三個不同點,使,
證明: 為定值,并求此定值。(8分)


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C: 的焦點為F1(0,c)、F2(0,一c)(c>0),拋物線的焦點與F1重合,過F2的直線l與拋物線P相切,切點在第一象限,且與橢圓C相交于A、B兩點,且
(I)求證:切線l的斜率為定值;
(Ⅱ)若拋物線P與直線l及y軸圍成的圖形面積為,求拋物線P的方程;
(III)當(dāng)時,求橢圓離心率e的取值范圍。


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓+=1的兩個焦點分別為F1、F2,P為橢圓上一點,且PF1⊥PF2,則||PF1|-|PF2||的值為(   )
A.2B.6C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過的直線交橢圓于,若的周長為,則橢圓方程為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓上存在一點M,它到左焦點的距離是它到右準(zhǔn)線距離的2倍,則橢圓離心率的最小值為       .

查看答案和解析>>

同步練習(xí)冊答案