分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)得到$0.{8}^{(lo{g}_{2}x)^{2}-1}$<$0.{8}^{2(2+lo{g}_{\sqrt{x}}(\sqrt{x})^{2})}$,再根據(jù)指數(shù)函數(shù)的性質(zhì)即可得到(log2x)2-1>8,解得即可
解答 解:由(1.25)${\;}^{1-(lo{g}_{2}x)^{2}}$<(0.64)${\;}^{2+lo{g}_{\sqrt{x}}x}$.
得到$0.{8}^{(lo{g}_{2}x)^{2}-1}$<$0.{8}^{2(2+lo{g}_{\sqrt{x}}(\sqrt{x})^{2})}$,
∴(log2x)2-1>8,
∴(log2x)2>9,
即log2x<-3或log2x>3,
∴0<x<$\frac{1}{8}$或x>8
點評 本題考查了指數(shù)對數(shù)不等式的解法,關(guān)鍵是掌握對數(shù)函數(shù)指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,0] | B. | (-∞,0] | C. | [-2,-1] | D. | $[-2,-\frac{1}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com