【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.
【答案】(1)見證明;(2)
【解析】
(1)連結(jié)BD交AC于點O,連結(jié)EO,推導(dǎo)出EO∥PB,由此能證明PB∥平面AEC.
(2)根據(jù)題意可得即為設(shè)PC與平面ABCD所成的角故,可得
根據(jù)勾股定理可得 ,,由此可求
三棱錐E-ACD的體積
(1)連接BD交AC于點F,連接EF
則在三角形BDP中,點E是PD的中點,點F是BD的中點,即線段EF是的中位線
所以PB‖EF,又因為PB平面AEC,EF平面AEC,所以PB‖平面AEC
(2)根據(jù)題意可得即為設(shè)PC與平面ABCD所成的角,故,可得
根據(jù)勾股定理可得,所以 ,三棱錐E-ACD的高為,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:“平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過的路程的乘積”.利用這一定理,可求得半圓盤,繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.
(1)證明:平面ABC;
(2)求二面角的余弦值;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,,其中.
(1)當(dāng)時,求證:;
(2)當(dāng)與平面所成角的正弦值為時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)器生產(chǎn)商,對一次性購買兩臺機(jī)器的客戶推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修方案:
方案一:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過次每次收取維修費(fèi)元;
方案二:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過次每次收取維修費(fèi)元.
某工廠準(zhǔn)備一次性購買兩臺這種機(jī)器,現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
機(jī)器臺數(shù) | 20 | 10 | 40 | 30 |
以上臺機(jī)器維修次數(shù)的頻率代替一臺機(jī)器維修次數(shù)發(fā)生的概率,記表示這兩臺機(jī)器超過質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).
求的分布列;
以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,邊,,令,,,過邊上一點(異于端點)引邊的垂線,垂足為,再由引邊的垂線,垂足為,又由引邊的垂線,垂足為,同樣的操作連續(xù)進(jìn)行,得到點列、、,設(shè)();
(1)求;
(2)結(jié)論“”是否正確?請說明理由;
(3)若對于任意,不等式恒成立,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距為,點在橢圓上,且的最小值是(為坐標(biāo)原點).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)已知動直線與圓:相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com