15.在數(shù)列{an}中,a2=$\frac{2}{3}$.
(1)若數(shù)列{an}滿足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Tn

分析 (1)數(shù)列{an}滿足2an-an-1=0,a2=$\frac{2}{3}$.可得an≠0,$\frac{{a}_{n+1}}{{a}_{n}}$=2,利用等比數(shù)列的通項(xiàng)公式即可得出an
(2)數(shù)列{(2n-1)an+1}是等差數(shù)列,設(shè)公差為d,由a4=$\frac{4}{7}$,a2=$\frac{2}{3}$.利用等差數(shù)列的通項(xiàng)公式可得d.進(jìn)而可得an.再利用等差數(shù)列的求和公式即可得出.

解答 解:(1)∵數(shù)列{an}滿足2an-an-1=0,a2=$\frac{2}{3}$.
∴an≠0,$\frac{{a}_{n+1}}{{a}_{n}}$=2,∴a1=$\frac{1}{3}$.
∴數(shù)列{an}是等比數(shù)列,公比為2,首項(xiàng)為$\frac{1}{3}$.
∴an=$\frac{1}{3}×{2}^{n-1}$.
(2)數(shù)列{(2n-1)an+1}是等差數(shù)列,設(shè)公差為d,∵a4=$\frac{4}{7}$,a2=$\frac{2}{3}$.
∴$7×\frac{4}{7}$+1=$3×\frac{2}{3}$+1+2d,解得d=1.
∴(2n-1)an+1=3×$\frac{2}{3}$+1+(n-2)×1,解得an=$\frac{n}{2n-1}$.
∴$\frac{n}{{a}_{n}}$=2n-1.
∴數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Tn=1+3+…+(2n-1)
=$\frac{n(1+2n-1)}{2}$=n2

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.將曲線ρ2(1+sin2θ)=2化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,焦距為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C相交于A,B兩點(diǎn),且kOA•kOB=-$\frac{3}{4}$.
①求證:△AOB的面積為定值;
②橢圓C上是否存在一點(diǎn)P,使得四邊形OAPB為平行四邊形?若存在,求出點(diǎn)P橫坐標(biāo)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)直線l的極坐標(biāo)方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射線$\sqrt{3}$x-y=0(x≥0)與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)全集U={x∈R|x>0},函數(shù)f(x)=$\frac{1}{\sqrt{lnx-1}}$的定義域?yàn)锳,則∁UA為( 。
A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷方式,隨機(jī)調(diào)查了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過(guò)40歲的有65人將所抽樣本中周平均網(wǎng)購(gòu)次數(shù)不小于4次的市民稱為網(wǎng)購(gòu)迷,且已知其中有5名市民的年齡超過(guò)40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過(guò)40歲有關(guān)?
網(wǎng)購(gòu)迷非網(wǎng)購(gòu)迷合計(jì)
年齡不超過(guò)40歲
年齡超過(guò)40歲
合計(jì)
(2)若從網(wǎng)購(gòu)迷中任意選取2名,求其中年齡丑啊過(guò)40歲的市民人數(shù)ξ的分布列與期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2≥k00.150.100.050.01
k02.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.襄陽(yáng)農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2326322616
襄陽(yáng)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.從3名男同學(xué)和2名女同學(xué)中任選2名參加體能測(cè)試,則恰有1名男同學(xué)參加體能測(cè)試的概率為$\frac{3}{5}$.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.春天是鼻炎和感冒的高發(fā)期,某人在春季里鼻炎發(fā)作的概率為0.8,鼻炎發(fā)作且感冒的概率為0.6,則此人鼻炎發(fā)作的條件下,他感冒的概率為(  )
A.0.48B.0.40C.0.64D.0.75

查看答案和解析>>

同步練習(xí)冊(cè)答案