A. | $[2,\;\;3+\frac{{3\sqrt{2}}}{4}]$ | B. | $[2,\;\;3+\frac{{\sqrt{5}}}{2}]$ | ||
C. | $[3-\;\;\frac{{\sqrt{2}}}{4},\;\;3+\frac{{\sqrt{5}}}{2}]$ | D. | $[3-\;\;\frac{{\sqrt{17}}}{2},\;\;3+\;\frac{{\sqrt{17}}}{2}]$ |
分析 建立直角坐標(biāo)系,寫出點的坐標(biāo)與圓的方程;
設(shè)出點P的坐標(biāo),求出三個向量坐標(biāo),將P的坐標(biāo)代入圓的方程求出4x-y的取值范圍.
解答 解:以A為坐標(biāo)原點,AB為x軸,DA為y軸建立平面直角坐標(biāo)系則
A(0,0),D(0,1),C(1,1),B(2,0)
直線BD的方程為x+2y-2=0,C到BD的距離d=$\frac{\sqrt{5}}{5}$;
∴以點C為圓心,以$\frac{1}{2}$為半徑的圓方程為(x-1)2+(y-1)2=$\frac{1}{4}$,
設(shè)P(m,n)則 $\overrightarrow{AP}$=(m,n),$\overrightarrow{AB}$=(2,0),$\overrightarrow{BC}$=(-1,1);
∴(m,n)=(2x-y,y)
∴m=2x-y,n=y,
∵P在圓內(nèi)或圓上
∴(2x-y-1)2+(y-1)2≤$\frac{1}{4}$,
設(shè)4x-y=t,則y=4x-t,代入上式整理得
80x2-(48t+32)x+8t2+7≤0,
設(shè)f(x)=80x2-(48t+32)x+8t2+7,x∈[$\frac{1}{2}$,$\frac{3}{2}$],
則$\left\{\begin{array}{l}{f(\frac{1}{2})≤0}\\{f(\frac{3}{2})≤0}\end{array}\right.$,
解得2≤t≤3+$\frac{\sqrt{5}}{2}$,
∴4x-y的取值范圍是[2,3+$\frac{\sqrt{5}}{2}$].
故選:B.
點評 本題考查了直線與圓的應(yīng)用問題,也考查了數(shù)形結(jié)合應(yīng)用問題,是綜合題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第一批次 | 第二批次 | 第三批次 | |
女教職工 | 196 | x | y |
男教職工 | 204 | 156 | z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 共線 | B. | 不共線 | C. | 不共面 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5;4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(I)求取出的3個球編號都不相同的概率;
(II)記為取出的3個球中編號的最小值,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com