2.已知一圓錐表面積為15πcm2,且它的側面展開圖是一個半圓,則圓錐的底面半徑為$\sqrt{5}$cm.

分析 設圓錐的底面圓的半徑為r,母線長為l,利用側面展開圖是一個半圓,求得母線長與底面半徑之間的關系,代入表面積公式求r.

解答 解:設圓錐的底面圓的半徑為r,母線長為l,
∵側面展開圖是一個半圓,∴πl(wèi)=2πr⇒l=2r,
∵圓錐的表面積為15π,∴πr2+πrl=3πr2=15π,∴r=$\sqrt{5}$,
故圓錐的底面半徑為$\sqrt{5}$(cm).
故答案為:$\sqrt{5}$.

點評 本題考查圓錐的表面積公式及圓錐的側面展開圖,解題的關鍵是利用側面展開圖是一個半圓,求得母線長與底面半徑之間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.若$f(θ)=sinθ-\sqrt{3}cosθ=2sin({θ+φ})({-π<φ<π})$,則φ=$-\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集為$\{x|-\frac{4a}{5}≤x≤\frac{3b}{5}\}$,a,b∈R.
(1)求a,b的值;
(2)對任意實數(shù)x,都有|x-a|+|x+b|≥m2-3m+5成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{{e}^{x}}$,對任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)>g(x2)成立,則實數(shù)a的取值范圍是(e-2-$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時的x的集合;
(2)函數(shù)的單調減區(qū)間;
(3)當x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時,求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$化簡后等于( 。
A.$\overrightarrow{AB}$B.3 $\overrightarrow{AB}$C.$\overrightarrow{BA}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若向量$\overrightarrow a$與$\overrightarrow b$的夾角θ的正弦值為$\frac{{\sqrt{2}}}{2}$,則θ=$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為$\frac{1}{2}$,且點P在圖中陰影部分(包括邊界)運動.若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$,其中x,y∈R,則4x-y的取值范圍是( 。
A.$[2,\;\;3+\frac{{3\sqrt{2}}}{4}]$B.$[2,\;\;3+\frac{{\sqrt{5}}}{2}]$
C.$[3-\;\;\frac{{\sqrt{2}}}{4},\;\;3+\frac{{\sqrt{5}}}{2}]$D.$[3-\;\;\frac{{\sqrt{17}}}{2},\;\;3+\;\frac{{\sqrt{17}}}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,D在邊BC上,且BD=2,DC=1,∠B=30°,∠ADC=150°,AB的長為$\frac{2\sqrt{3}}{3}$;△ABC的面積$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案