若函數(shù)f(x)是以
π
2
為周期的函數(shù),且f(
π
3
)=1,則f(
17
6
π)=( 。
A、1B、2C、3D、4
考點(diǎn):函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用周期函數(shù)的概念結(jié)合已知條件求值.
解答: 解:∵函數(shù)f(x)是以
π
2
為周期的函數(shù),且f(
π
3
)=1,
∴f(
17
6
π)=f(4×
π
2
+
6
)=f(
6
)=f(
6
-
π
2
)=f(
π
3
)=1.
故選:A.
點(diǎn)評:本題考查了函數(shù)的周期性,關(guān)鍵是對函數(shù)周期的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
9
x
的單調(diào)增區(qū)間是( 。
A、(-∞,+∞)
B、(-∞,0),(0,+∞)
C、(-∞,-3),(3,+∞)
D、(-∞,-9),(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將一個(gè)四棱錐的每一個(gè)頂點(diǎn)染上一種顏色,并使同一條棱上的兩端異色,如果只有5種顏色可供使用,則不同的染色方法總數(shù)為( 。
A、60B、480
C、420D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實(shí)數(shù)對(a,b)和(c,d),規(guī)定:(a,b)=(c,d)當(dāng)且僅當(dāng)a=c,c=d,定義運(yùn)算如下:
①(a,b)?(c,d)=(ac-bd,bc+ad);
②(a,b)⊕(c,d)=(a+c,b+d).
設(shè)p,q∈R,若(1,2)?(p,q)=(5,0),則(1,2)⊕(p,q)等于( 。
A、(4,0)
B、(2,0)
C、(0,2)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f (x)=|2x-a|+1 的定義域?yàn)閇p,q],值域?yàn)閇1,2],則q-p的最大值為( 。
A、1B、2
C、a+1D、2 a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在區(qū)間[-5,5]上的偶函數(shù),且在[0,5]上是單調(diào)函數(shù),f(1)<f(3),則下列各式一定成立的是( 。
A、f(0)>f(5)
B、f(3)<f(2)
C、f(-1)>f(3)
D、f(-2)>f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2ax+5(0<a<3),若x1<x2,x1+x2=1-a,則(  )
A、f(x1)>f(x2
B、f(x1)<f(x2
C、f(x1)=f(x2
D、f(x1)與f(x2)的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

擲一枚質(zhì)地均勻的硬幣3次,恰有2次正面向上的概率為( 。
A、
2
3
B、
3
8
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+sinθ•y-1=0,l2:cosθ•x+
1
2
y+1=0,其中0≤θ≤
π
2

(1)若l1⊥l2,求tanθ的值;
(2)求直線l1的傾斜角a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案