已知函數(shù)f(x)=log2(2-ax)在[-1,+∞)為單調(diào)增函數(shù),則a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得y=2-ax在[-1,+∞)為單調(diào)增函數(shù),且為正值,故有
-a>0
2+a>0
,由此求得a的范圍.
解答: 解:由于函數(shù)f(x)=log2(2-ax)在[-1,+∞)為單調(diào)增函數(shù),可得y=2-ax在[-1,+∞)為單調(diào)增函數(shù),且為正值,
故有
-a>0
2+a>0
,求得-2<a<0,
故答案為:(-2,0).
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性的性質(zhì),復(fù)合函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+lnx.
(1)求函數(shù)f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)+mx在[1,+∞)上為單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若在[1,e]上至少存在一個(gè)x0,使得kx0-f(x0)>
2e
x0
成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐V-ABCD的底面ABCD是邊長為2的正方形,其他四個(gè)側(cè)面都是側(cè)棱長為
5
的等腰三角形.
(1)求證:平面VAC⊥平面VBD;
(2)若M,N分別為棱VA,BC的中點(diǎn),求證:MN∥側(cè)面VCD;
(3)試求(2)中的MN與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱錐S-ABC中,M、N分別為棱SC、BC的中點(diǎn),并且AM⊥MN,若側(cè)棱長SA=
3
,則正三棱錐S-ABC的外接球的體積為(  )
A、
9
2
π
B、9π
C、12π
D、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的準(zhǔn)線為x=-
P
2
(p>0),頂點(diǎn)在原點(diǎn),直線l:y=x-1過拋物線的焦點(diǎn),并與拋物線交于A,B兩點(diǎn).求拋物線方程和弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x
2x-1
在點(diǎn)(1,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)R上的函數(shù)f(x)滿足f(4)=1,它的導(dǎo)函數(shù)的圖象如圖,若正數(shù)a、b滿足f(2a+b)<1,則
b+2
a+2
的取值范圍是(  )
A、(
1
3
,
1
2
B、(-∞,
1
2
)∪(3,+∞)
C、(
1
2
,3)
D、(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過平面外一點(diǎn)作該平面的平行線有
 
條;平行平面有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)h(x)=2sin(2x+
π
4
)的圖象向右平移
π
4
個(gè)單位向上平移2個(gè)單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象( 。
A、關(guān)于直線x=0對稱
B、關(guān)于直線x=
π
8
對稱
C、關(guān)于點(diǎn)(
8
,2)
對稱
D、關(guān)于點(diǎn)(
π
8
,2)
對稱

查看答案和解析>>

同步練習(xí)冊答案