設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若c(1+cosA)=
3
a•sinC

(1)求角A的大小;
(2)若a=2,△ABC的面積為
3
,求△ABC的周長.
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:(1)已知等式利用正弦定理化簡,根據(jù)sinC不為0,利用兩角和與差的正弦函數(shù)公式變形,求出A的度數(shù)即可;
(2)由a,以及cosA的值,利用余弦定理列出關(guān)系式得到b2+c2-bc=4,再利用三角形面積公式列出關(guān)系式,將已知面積及sinA代入求出bc=4,兩式聯(lián)立求出b+c的值,由a+b+c即可求出三角形ABC周長.
解答: 解:(1)由已知及正弦定理得sinC(1+cosA)=
3
sinAsinC,
∵sinC≠0,∴1+cosA=
3
sinA,即
3
sinA-cosA=2(
3
2
sinA-
1
2
cosA)=2sin(A-
π
6
)=1,
∴A-
π
6
=
π
6
或A-
π
6
=
6
(舍去),
∴A=
π
3
;
(2)∵a=2,cosA=cos
π
3
=
1
2
,
由余弦定理得:a2=b2+c2-2bccosA,即b2+c2-bc=4,①
∵△ABC的面積為
3
,即
1
2
bcsinA=
3
4
bc=
3

∴bc=4,②
聯(lián)立①②得:(b+c)2=4+3bc=16,
∴b+c=4,
則△ABC周長為a+b+c=2+4=6.
點(diǎn)評:此題考查了正弦、余弦定理,三角形面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個平面將空間分成兩部分,兩個平面將空間最多分成四部分,三個平面最多將空間分成八部分,…,由此猜測n(n∈N+)個平面最多將空間分成( 。
A、2n部分
B、n2部分
C、2n部分
D、
n3+5n
6
+1
部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖為一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則此幾何體的體積是( 。
A、
1
2
B、
2
C、
2
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次方程ax2+bx+c=0的兩根為-2,3,a<0,那么ax2+bx+c>0的解集為( 。
A、{x|x>3或x<-2}
B、{x|x>2或x<-3}
C、{x|-2<x<3}
D、{x|-3<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(-3,
3
)

(Ⅰ)求
tan(-α)+sin(
π
2
+α)
cos(π-α)sin(-π-α)
的值:
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時停止.設(shè)在每局中參賽者勝負(fù)的概率均為
1
2
,且各局勝負(fù)相互獨(dú)立.求:
(Ⅰ)打滿4局比賽還未停止的概率;
(Ⅱ)比賽停止時已打局?jǐn)?shù)ξ的分布列與期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
如圖,E是圓O中直徑CF延長線上一點(diǎn),弦AB⊥CF,AE交圓O于P,PB交CF于D,連接AO、AD.求證:
(Ⅰ)∠E=∠OAD;
(Ⅱ)OF2=OD•OE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點(diǎn),再從A1,A2,A3,A4,A5,A6(如圖)這6個點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就去打球;若X=0就去唱歌;若X<0就去下棋.
(Ⅰ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)寫出數(shù)量積X的所有可能取值,并求X分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,λ,λ-λ2)
,
b
=(2,1,
1
2
)
,且
a
b
的夾角為銳角,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案