設橢圓E:=1()過點M(2,), N(,1),為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

(I)橢圓E的方程為;(II)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且 

解析試題分析:(I)將點M(2,) ,N(,1)的坐標代入橢圓的方程即得一方程組:解這個方程組得,從而得橢圓E的方程為 
(II)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且 設該圓的切線方程為,聯(lián)立方程組,利用韋達定理及找到k與m間的關系式,再利用直線與圓相切,看看能否求出這樣的圓來,若能求出這樣的圓,則說明存在,若不能求出這樣的圓,則說明不存在
試題解析: (I)因為橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,
所以解得所以橢圓E的方程為     4分
(II)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組,即  ,
則△=,即
,  7分
要使,需使,即,
所以,所以,所以,
所以,即,                  9分
因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,
所求的圓為,                       11分
此時圓的切線都滿足,
而當切線的斜率不存在時切線為與橢圓的兩個交點為滿足,                    12分 
綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且 
13分
考點:1、橢圓的方程;2、直線與圓錐曲線的位置關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩個焦點為F1,F(xiàn)2,橢圓上一點M
滿足.
(1)求橢圓的方程;
(2)若直線L:y=與橢圓恒有不同交點A,B,且(O為坐標原點),求實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左、右頂點分別為、,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點,
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且的兩個交點A和B滿足(其中0為原點),求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且、構成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知頂點在原點,焦點在軸上的拋物線被直線截得的弦長為,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足為坐標原點),當 時,求實數(shù)取值范圍.

查看答案和解析>>

同步練習冊答案